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ABSTRACT 
 

Machine learning has long championed the Support Vector Machine (SVM) for its classification 

prowess. Traditional research primarily focused on dual SVM optimization due to its 

compatibility with non-separable datasets via the kernel trick. However, the quadratic nature of 

dual optimization sometimes led to slower training speeds. This study explores an alternative 

perspective, emphasizing the primal SVM optimization problem. 

Instead of using the conventional approach, this research introduces a novel and fast technique 

that leverages the power of separable programming, termed the Piecewise Linear 

Approximation SVM (PLA-SVM). The crux of the method lies in transforming the inherently 

non-linear primal SVM problem into an approximating linear Programming (LP) problem 

through piecewise linear approximation using the lambda formulation of separable 

programming. Executing this transformational approach, the research harnesses the 

computational prowess of the GUROBI optimizer solver, unveiling a novel method for SVM 

optimization. 

The hard-margin PLA-SVM, designed for linearly separable datasets, was rigorously validated 

in the context of fault classification in a laboratory gas turbine engine. The study then introduced 

the soft-margin PLA-SVM, which introduces regularization parameters  and slack variables 

 for noisy or misclassified data. The proposed soft-margin PLA-SVM is validated on the IRIS 

flower dataset, PIMA Indian Diabetes dataset, Wisconsin Breast Cancer Original dataset, and 

Predictive Maintenance AI4I2020 dataset. 

In head-to-head comparisons with existing classifiers like SMO-based SVM, linear discriminant 

analysis, KNN (K-nearest neighbors), decision trees, ensemble boosted trees, tri-layered neural 

networks, and contemporary XGBoost, PLA-SVM consistently demonstrated significantly 

faster training speeds and minor improvements in accuracy, precision, F1 score, and AUC-ROC 

metrics. 

To showcase the strength of PLA-SVM, especially for large datasets, we performed practical 

experiments with around 30,266 observations from a machine learning tool  a DC motor kit 

for multi-fault classification. Recognizing the limitations of primal SVMs in handling non-
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separable datasets, we strategically transformed the non-separable dataset obtained from the 

machine learning tool using explicit kernel method. The results revealed that PLA-SVM 

exhibited superior training speed with a slight improvement in accuracy and other key 

performance metrics.  

In summary, this research introduces a paradigm shift in SVM optimization and demonstrates 

its exceptional effectiveness across various datasets and practical applications.  

Keywords: Separable Programming, Piecewise Linear Approximation, Gurobi, Special Order 

Set Type 2, PLA-SVM, Optimization. 
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CHAPTER - 1 

Introduction  

1.1 Introduction 

Machine learning stands as an indispensable facet in today's technological landscape, 

propelled forward by pioneering algorithms like Support Vector Machines (SVMs). Cortes 

and Vapnik introduced the concept of Support Vector Machines (SVMs) to tackle regression 

and classification issues [1]. SVM, primarily a linear classifier handling two or more classes, 

has evolved to handle non-linear classification using kernel tricks. Its efficacy spans various 

data applications such as word-sense disambiguation, document classification, and drug 

design. Training SVM involves optimizing a concave function, offering a unique and 

definitive solution. 

 

The historical origins of much of the current dual optimization research remain elusive. 

Given that SVMs were initially presented in hard margin formulation, we contend that a dual 

optimization approach is more appropriate [2]. Fresh approximation techniques surface 

when one examines the primal facet. By employing its primal formulation, this study 

effectively resolves the SVM design problem. 

 

Primal approaches possess an inherent appeal, as the primal objective function continuously 

diminishes. In SVM literature, the majority of authors have concentrated on the dual 

optimization problem, which employs LaGrange multipliers associated with each support 

vector. However, a drawback of the dual SVM formulation lies in the necessity of assigning 

random initial values to the LaGrange multipliers. Consequently, the solution heavily relies 

 

 

Despite their remarkable accuracy, SVMs sometimes encounter disfavor due to prolonged 

training requirements. Thus, the necessity for swift algorithms to resolve these issues 

becomes crucial [3]. Nataraj and Makwana have presented a proficient and prompt strategy 

for formulating a QFT controller [4] using separable linear programming principles (referred 
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to as the PLA-LP method) [5 - 8]. GUROBI optimizer proficiently addresses the intricate 

non-convex and non-linear challenges inherent in QFT controller design [9]. Inspired by the 

inherently non-linear nature of the soft-margin SVM's objective function, we construct an 

SVM optimization problem employing separable programming principles. 

 

In line with the current trend focusing on the primal form to address the SVM problem [10 

 17], we introduce an innovative approach to solve the SVM design problem in its primal 

formulation named as Piecewise Linear Approximation based Support Vector Machine 

(PLA-SVM). This approach transforms the primal SVM's non-linear quadratic optimization 

problems into approximate linear programming problems utilizing separable programming 

concepts [18]. This proposed method offers a pathway to approximate intricate non-linear 

quadratic optimization challenges by reshaping them into more manageable linear 

programming problems. This approach has the potential to streamline the SVM optimization 

process, promising significant reductions in training times. 

 

The GUROBI-MATLAB interface of GUROBI Optimizer serves as our choice to solve the 

proposed PLA-SVMs [19]. Opting for the GUROBI Optimizer [9] is recommended due to 

its adept handling of separable programming models and the availability of a comprehensive 

academic license at no cost. 

1.2 Motivation 

Exploring the field of SVMs in contemporary literature reveals a pronounced emphasis on 

numerical optimization techniques. This focus includes various methods such as interior 

point methods, gradient descent methods, sequential minimal optimization (SMO), trust 

region methods, and evolutionary algorithms like genetic algorithms and particle swarm 

optimization. However, the exploration of separable linear programming approaches in the 

context of SVMs remains notably underexplored. 

By reframing the SVM design challenge into a separable linear programming problem, we 

can tap into advanced optimization tools to secure efficient and globally optimal solutions. 

Notably, parallel solvers leveraging shared memory parallelism exhibit prowess in 

harnessing multiple processors and their cores. This capability stands pivotal in swiftly 

identifying optimal solutions for datasets of considerable scale. Hence, this thesis endeavors 
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to propose a novel method of shaping SVM design problem into separable linear 

programming models, anticipating substantial strides in computational efficiency and 

scalability. 

1.3 Definition of the Problem 

Non-linear programming (NLP) problems serve as critical elements in engineering 

optimization. Over the years, piecewise linearization methods have gained momentum, 

transforming NLPs into linear programming (LP) or mixed-integer programming (MIP) 

models, offering approximated global optimal solutions. The simplex method, renowned for 

its efficiency in tackling large-scale LP problems, remains a prevalent choice for solution 

procedures. 

Extending the capabilities of the simplex method to address general NLP problems involves 

a crucial step: the conversion of non-separable objective functions and/or constraints into 

separable forms. Separable function can be written as the sum of functions concerning 

individual decision variables [5][18]. While encountering potential limitations of 

separability, a function which is not separable can be transformed into a separable one using 

appropriate substitutions. The primary advantage of employing separable linear 

programming formulation lies in the independence it confers upon nonlinearities in 

mathematical terms. Each nonlinear function undergoes replacement with a Piecewise 

Linear Approximation (PLA) structured through SOS2 

-formulation [8]. Global solutions can then be derived utilizing any 

proficient LP solver. 

Despite their prowess in machine learning, Support Vector Machines (SVMs) grapple with 

computational challenges, particularly in their dual form when dealing with extensive 

datasets using kernel tricks. This underscores the shift in focus towards addressing the primal 

optimization problem of SVMs, which, despite its inherent advantages, grapples with 

complexity due to intrinsic non-linearity. To surmount this challenge, we embark on a dual-

fold mission: 

1. Transposing the Primal SVM Challenge: The primal SVM holds direct optimization 

advantages but poses a formidable non-linear challenge, especially when confronted 

with datasets that exceed linear separability. 
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2. Ensuring Computational Efficiency: Beyond addressing the non-linearity inherent in 

the primal SVM, a methodology is sought to handle this non-linearity with 

computational expediency. 

 

The proposed solution revolves around transforming the primal SVM's non-linear problem 

into an approximate linear programming framework. This transformation leverages 

separable programming principles and piecewise linear approximations, notably the lambda 

formulation. 

Successful execution of this strategy yields two pivotal advantages: 

1. Streamlined SVM Optimization: The conversion of the primal SVM's inherent non-

linearity into a piecewise linear approximation streamlines its optimization process, 

rendering it more manageable and solvable through existing linear programming 

tools. 

2. Enhanced Computational Efficiency: The amalgamation of this transformed SVM 

problem with robust optimization platforms such as the GUROBI optimizer promises 

substantial leaps in computational efficiency, distinctly evidenced by reduced 

training times and improved performance metrics. 

 

In essence, this research endeavors to enrich SVM optimization by addressing the challenges 

encountered in the primal SVM. Through the PLA-SVM technique, an alternative to 

traditional SVM methods emerges, focusing on elevating computational efficiency and 

bolstering classification effectiveness. 

1.4 Objective and Scope of Work 

Objective:  

At the heart of SVM design lies the solution to a quadratic optimization problem. The 

primary objective of this research is to advance and refine SVM optimization techniques by 

integrating principles from linear programming. Specifically, we aim to introduce and 

validate the Piecewise Linear Approximation based Support Vector Machines (PLA-SVM) 
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methodology, which harnesses the strengths of linear programming to offer an efficient and 

streamlined approach to SVM design and training. Our primary objective is to significantly 

enhance the computational efficiency of SVMs while maintaining or even improving their 

robust classification capabilities. 

Scope of Work:  

The research entails the development of a versatile framework for PLA-SVM applicable 

across diverse data scenarios, spanning datasets exhibiting linear separability to those that 

don't. It encompasses the creation of both hard-margin and soft-margin PLA-SVM models 

catering to varying degrees of data separability. 

In terms of computation, the research probes into optimizations aimed at enhancing 

computational efficiency. This involves transforming the SVM problem to align with 

advanced linear programming techniques, integrating it with state-of-the-art optimization 

solvers. 

Validation exercises utilizing established datasets will serve to demonstrate the effectiveness 

of PLA-SVM. This validation will compare its performance against existing classifiers 

across various metrics, providing a benchmark. Practical implementation in real-world 

scenarios, such as fault classification tasks, will assess scalability and performance with 

high-dimensional datasets. 

Furthermore, the scope includes an investigation into kernel methods to augment PLA-

SVM's adaptability to non-separable datasets. This pursuit aims to strike an optimal balance 

between computational speed and classification accuracy. The overarching goal is to extend 

the utility of SVMs to diverse practical applications, ensuring that the methods developed 

are robust, scalable, and efficient within real-world environments. 

1.5 Features of the proposed approach 

Below, we illuminate the distinctive features encapsulated within the proposed approach: 

i) Direct Solution of Primal Optimization: PLA-SVM offers a substantial advantage by 

directly resolving the primal optimization issue within SVM. This streamlined approach 

simplifies the optimization process, leading to a more efficient and computationally tractable 
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solution. 

ii) No Initial Guess Required: Unlike certain optimization methods that rely on initial guess 

solutions, PLA-SVM offers greater versatility. Although it may necessitate an initial search 

domain for hyperplane parameters, it does not rely on an initial guess for the solution. This 

flexibility ensures that PLA-SVM can be applied across a wide range of problems without 

the need for heuristic starting points. 

iii) Feasibility and Optimality Guarantees: PLA-SVM provides robust guarantees regarding 

feasibility and optimality. If a feasible solution exists within the specified search domain, 

PLA-SVM unfailingly identifies the optimal solution. Conversely, if no feasible solution 

exists, PLA-SVM adeptly confirms this fact. These guarantees significantly bolster the 

reliability of the proposed method in addressing SVM optimization challenges. 

iv) Efficient for Large Datasets: Leveraging linear programming techniques, PLA-SVM 

excels in training models using large datasets. Its efficiency ensures swift processing even 

with extensive datasets, making it a practical choice for applications where computational 

speed is paramount. 

v) Generalization on Unseen Data: The global optimal solution of SVM parameters in PLA-

SVM ensures that it generalizes well on unseen data. 

These attributes collectively characterize the proposed method, underlining its potential to 

significantly advance SVM methodologies across diverse fields. 

1.6 Original contributions by the thesis 

This thesis makes significant contributions to the domain of Support Vector Machines 

(SVMs) and their optimization methodologies. The key original contributions include: 

Novel SVM Formulation: The introduction of the Piecewise Linear Approximation Support 

Vector Machine (PLA-SVM) merges the principles of separable programming with SVMs, 

transforming the primal problem into a piecewise linear framework. 

Direct Primal Optimization Solution: The thesis pioneers a direct approach in solving the 

primal optimization challenge within SVMs, illustrating its efficacy when compared to the 

conventional dual perspective. 
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Enhanced Computational Efficiency: Through the utilization of the GUROBI optimizer 

solver, PLA-SVM significantly enhances training speed, crucial for real-time applications 

and handling large datasets. 

Versatility across Data Scenarios: PLA-SVM demonstrates adaptability across diverse 

scenarios, from fault identification in gas turbine engines to breast cancer predictions, 

thereby affirming its utility in real-world applications. 

Explicit Kernel Transformation: Overcoming the limitations of primal SVMs with non-

separable data through explicit kernel transformations, thereby retaining core advantages 

while achieving remarkable training speed. 

Benchmarking against Classifiers: A comprehensive comparison study highlights PLA-

SVM's consistent superiority over well-known classifiers on several parameters, including 

accuracy, precision, speed, and various metrics. 

Elimination of Initial Guess Dependency: PLA-SVM's distinctiveness lies in its 

independence from an initial guess solution, introducing a dynamic approach that adapts the 

initial search domain based on solver outcomes. 

In summary, these contributions not only introduce innovative and efficient methods but also 

pave the way for future advancements in SVM methodologies across diverse fields. 

1.7 Organization of Thesis  

The subsequent chapters of this thesis contribute to an in-depth exploration and development 

of Piecewise Linear Approximation based Support Vector Machines (PLA-SVMs). 

Following this introduction, the subsequent chapters provide a systematic exploration and 

meticulous development of the PLA-SVM framework. 

Chapter 2 surveys the existing literature in the domain, offering an in-depth analysis of the 

existing body of work related to SVMs, separable programming, and optimization 

techniques. This chapter serves as a comprehensive guide to the foundational knowledge 

necessary for understanding and contextualizing the proposed PLA-SVM methodology. 
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Chapter 3 dives into the fundamental principles of separable programming, laying the 

groundwork for the PLA-SVM framework. It elucidates the underlying concepts and 

methodologies essential for the development and understanding of the subsequent chapters. 

Chapters 4 and 5 focus on the meticulous design and formulation of hard-margin and soft-

margin PLA-SVM models, respectively. These chapters detail the specificities, 

complexities, and adaptations required to create robust models catering to varying degrees 

of data separability. 

Moving ahead, Chapters 6 and 7 explore the practical implementation aspects of the hard-

margin and soft-margin PLA-SVMs. These chapters discuss the practical considerations, 

challenges encountered, and solutions implemented during the implementation phase. 

Chapter 8 marks a significant phase of this thesis, where the proposed PLA-SVM 

methodologies undergo rigorous validation in practical scenarios. This chapter showcases 

how these methodologies perform against established classifiers and datasets, demonstrating 

their effectiveness, scalability, and real-world applicability. 

Finally, Chapter 9 wraps up this thesis by summarizing the findings, drawing conclusions 

based on the results obtained, and outlining potential future directions for enhancing and 

expanding the PLA-SVM methodologies in diverse practical applications. 

 

 



 

9 
 

CHAPTER 2 

Literature Survey 

2.1 Introduction  

The realm of machine learning has witnessed a transformative evolution, prominently 

marked by the development and refinement of Support Vector Machines (SVMs). Support 

Vector Machines (SVMs) are a versatile and powerful set of supervised learning algorithms 

widely used for classification, regression, and outlier detection tasks [1] [2]. SVMs excel in 

a variety of applications, including bioinformatics, text categorization, image classification, 

and handwriting recognition, adeptly handling both linear and non-linear data scenarios.  

The SVM optimization problem can be approached in two ways: 

Dual Form Optimization: Initially, SVMs were presented in a hard-margin formulation, 

leading to a focus on dual optimization. The dual form is derived from the primal form using 

Lagrange multipliers, which are associated with each support vector. The dual form of SVM 

addresses cases where data is not linearly separable by employing the kernel trick.  

Primal Form Optimization: The primal form of SVM optimization directly addresses the 

SVM's primary problem without relying on LaGrange multipliers. Recently, this approach 

has gained increasing popularity due to its direct reduction of the primal objective function, 

making it an attractive alternative for both linear and nonlinear datasets [20]-[23].  

In this chapter, we explore the intricate journey of SVMs, tracing their theoretical and 

methodological progression from basic formulations to advanced optimization strategies. 

Our exploration commences with a review of key research developments in SVMs, 

underscoring the foundational principles and significant milestones that have shaped this 

domain. 

A focal point of our discussion is the shift from conventional dual optimization approaches 

to the more recent, and arguably more efficient, primal optimization techniques. This 
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transition is not merely a theoretical refinement but a response to the growing complexities 

and demands of contemporary data analysis. By examining advanced SVM formulations, 

including Least Squares SVMs, Sparse Primal and Dual SVMs, and innovations like Ramp 

and application scope. 

Moreover, we address the integration of various norms in SVM training and the emerging 

trend towards primal form optimization, which signifies a move towards more direct, 

streamlined methods of problem-solving in machine learning. The chapter also covers the 

innovative use of linear programming-based learning in SVMs, a development that further 

showcases the flexibility and adaptability of SVM methodologies. We culminate with an in-

depth look at the application of separable programming and piecewise linear approximation, 

particularly in the context of our contribution: the development of PLA-SVM using Primal 

optimization, solved through separable linear programming with the GUROBI Optimizer. 

2.2 Related Work: A Review of Key Developments and Research 

This section presents a detailed exploration of the significant milestones and research 

developments in the field of support vector machines (SVM). Our focus is to thoroughly 

explore the foundational principles and the methodological advancements that have shaped 

SVM over time. While we will touch upon its diverse applications, the primary emphasis 

will be on understanding the theoretical evolution and the technical enhancements of SVM.  

By tracing SVM's development, we aim to provide a nuanced understanding of how it has 

adapted and grown in response to the challenges and demands of evolving data analysis 

needs, highlighting its technical sophistication and versatility. 

2.2.1 Advanced SVM Formulations 

In this section, we examine a range of innovative Support Vector Machine (SVM) 

formulations, each offering unique advantages and addressing specific challenges in SVM 

optimization. These developments include efforts to simplify the optimization process, 

enhance sparsity, and bolster robustness against outliers, signifying notable advancements 

in the field of SVM research 
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Least Squares Support Vector Machines (LS-SVMs): Least Squares Support Vector 

Machines (LS-SVMs) represent a significant advancement in the field of machine learning, 

particularly in the optimization of Support Vector Machines (SVMs). In their pioneering 

work, Suykens and Vandewalle have developed and detailed the primary form of LS-SVMs 

as a simplified approach to SVM optimization in place of the Quadratic Programming (QP) 

problem [24].  

The complex Quadratic Programming (QP) problem is replaced with a set of linear 

equations, making the optimization process more straightforward and computationally 

efficient. This innovation was crucial in enhancing the performance of SVM classifiers, 

particularly in scenarios where computational resources were limited. The performance of 

LS-SVMs in classification tasks was found to be on par with that of standard SVMs, 

representing a notable advancement in making machine learning algorithms more practical 

and user-friendly.  

Building on this foundation, Fung and Mangasarian further expanded the capabilities of LS-

SVMs and developed a multicategory version of LS-SVM, named Multicategory Proximal 

Support Vector Machine (MPSVM), addressing the challenge of applying SVMs to 

problems involving more than two classes [25]. This extension significantly broadened the 

scope of applications for LS-SVMs, making them a versatile tool in various machine 

learning applications, from image recognition to text classification. The contributions of both 

of these works have been instrumental in simplifying SVM optimization, enhancing 

computational efficiency, and expanding the scope of SVM applications in the rapidly 

evolving landscape of machine learning. 

Sparse Primal and Dual Least Squares SVM (SPDLSSVM): Shao et al. proposed a sparse 

primal and dual least squares support vector algorithm known as SPDLS SVM [26].  The 

SPDLS SVM algorithm addresses the challenges associated with traditional SVMs, which 

often involve dense models that can be computationally intensive, especially when dealing 

with large-scale data. By introducing sparsity into the primal and dual aspects of the SVM,  

Shao et al. aimed to reduce the computational burden and improve the scalability of the 

model. This is particularly important in applications where the speed of training and 

prediction is critical, such as real-time data processing or large-scale machine learning tasks.   
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Ramp Loss SVMs: The development of Ramp Loss SVMs, particularly through the 

contributions of Huang et al. and Hess et al., marks a significant advancement in the field of 

Support Vector Machines (SVMs) [27] [28].  

Huang et al. developed ramp loss-based linear programming SVMs [27]. In this approach, 

the L1 penalty, which is piecewise linear as well, is applied for the ramp loss, resulting in a 

ramp loss linear programming support vector machine (rampLPSVM) that is solved as a 

piecewise linear minimization problem. The key innovation here is the formulation of the 

SVM problem as a piecewise linear minimization problem, which enhances the efficiency 

and robustness of the SVM, especially in handling outliers and large datasets.  

2.2.2 Advances in SVM Norm Integration 

Recent research has explored different norms and optimization strategies in SVMs.  These 

advancements encompass the integration of varied norms into SVM training, the refinement 

of linear programming techniques, and the creation of new, more efficient SVM 

formulations. This progression in SVM research represents a significant shift toward primal 

optimization, underscoring a trend toward more direct and streamlined optimization 

methods. Researchers like Pedroso et al., Xie et al., Hess et al. Nie et al., and Survit have 

opened new avenues for enhancing SVM's performance [17] [29] [30] [31] [32].  

norm and accentuating the margin between the separation plane and datasets [29]. This 

modification emphasized the margin between the separation plane and datasets, presenting 

a significant development in the field of SVMs. 

Furthering this evolution, Xie et al. introduced a new perspective on SVMs [30]. They 

developed SVM formulations corresponding to L1-norm and infinity-norm, effectively 

encompassing both linear and non-linear SVMs. This dual approach broadened the 

applicability of SVMs, allowing for more versatile and robust models suitable for a range of 

problems. 

Additionally, Hess et al. combined the concepts of ramp loss SVM with L1-norm 

regularization, introducing SVM formulations that can be approached as a mixed integer 

linear program (MILP) [28] [31]. With the linear kernel, the ramp loss SVM with L1-norm 



  Literature Survey  

13 
 

regularization provides robustness to outliers. This development is crucial for applications 

where data may contain outliers or noise, as it ensures that the SVM model remains effective 

and accurate in such scenarios. This integration of ramp loss and L1-norm regularization in 

SVMs was a significant step towards creating models that are both efficient and effective in 

handling complex datasets [28] [31]. 

Nie et al. introduced a new L2-norm regularized primal SVM solver for large-scale datasets, 

addressing the growing need for fast SVM algorithms in the machine learning field [17]. 

This solver, utilizing Augmented Lagrange Multipliers, is designed to have a linear 

computational cost for Lp-norm loss functions. A key feature of the proposed algorithm is 

that its most complex steps involve matrix-by-vector multiplication, which is highly 

conducive to parallelization on multi-core servers. This aspect significantly enhances its 

efficiency in parallel computing environments. Comparative experiments demonstrate that 

this new solver consistently outperforms established methods like SVMperf, Pegasos, and 

existing solvers in LibLinear (including TRON, PCD, and DCD algorithms) in terms of 

speed and stable performance, marking it as a significant advancement in SVM solutions for 

big data classifications.  

Survit Sra presented a new method for constructing L1-norm Support Vector Machines 

(SVMs) which offered significant advancements in SVM efficiency [32]. Demonstrating its 

capabilities, Sra's algorithm was tested on synthetic datasets with up to 20 million points, 

showing an impressive speed advantage, several times quicker than previously reported.  

f solving primal problems in scenarios 

where training points greatly outnumber their dimensionality, and suggests potential 

adaptations of the decomposition method for related tasks, such as support vector regression 

and other SVM variants. The next phase in SVM evolution saw a noticeable tilt towards the 

primal optimization problem, characterized by direct approaches to SVM optimization [32]. 

2.2.3 Advances in Primal Form Optimization and Direct Approaches 

The recent trend in SVM research has been a pivot towards primal form optimization, as 

evidenced by the work of several key researchers. This approach emphasizes direct 

minimization of the primal objective function, resulting in an attractive approach. 



  Literature Survey  
 

14 
 

Researchers like Keerthi et al. have noted the increasing popularity of primal form 

optimization over dual form [10]. This method continuously reduces the primal objective 

function, resulting in an attractive approach. 

Optimizing SVMs in the primal domain shares notable similarities with dual optimization 

strategies, as observed by Chapelle, and its implementation is straightforward without the 

need for complex optimization libraries. O. Chapelle's letter further emphasized the 

effectiveness of primal SVMs by showing how the problems of primal SVM could be used 

to train both linear and nonlinear datasets efficiently [12]. This work emphasized the 

robustness and versatility of primal form optimization, making it an important contribution 

to the field. 

Research in this area has primarily concentrated on solving the primal problem for linear 

SVMs, demonstrating rapid and efficient solutions. Keerthi and DeCoste's Modified Finite 

Newton method optimizes the SVM in the primal using a conjugate gradient technique that 

is numerically robust and incorporates Newton iterations [10]. Additionally, Joachims and 

Shalev-Shwartz et al. have also used stochastic gradient descent and a cutting plane 

technique in their respective work to enhance the optimization process [11] [13]. 

Joachims presented a innovative approach for training linear Support Vector Machines 

(SVMs) efficiently, with a particular focus on the primal formulation of the SVM problem 

[11]. This method marks a significant advancement in SVM training, facilitating rapid 

processing while maintaining high accuracy. By optimizing the primal version of SVMs, 

Joachims' technique allows for faster and more scalable SVM training, making it highly 

suitable for large-scale data analysis and knowledge discovery applications. 

Shalev-Shwartz et al. introduced Pegasos, a novel method specifically designed for the 

primal estimation of sub-gradients in SVM training [13]. This approach, named Pegasos 

(Primal Estimated Sub-Gradient Solver for SVM), represents a significant advancement in 

the field of machine learning, offering a more efficient way to solve SVM problems. The 

method is particularly noted for its ability to handle large-scale datasets effectively, 

streamlining the SVM training process without sacrificing the model's accuracy and 

performance. This paper is a pivotal contribution to machine learning, especially in the 

context of optimizing SVM training techniques. 
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Zhizheng Liang and YouFu Li introduced a novel incremental SVM algorithm, specifically 

designed to handle sequentially arriving data samples, a departure from traditional SVM 

methods [20]. This innovative approach, implemented in the primal rather than the usual 

dual form, demonstrates that solving the primal problem can be highly efficient. They 

successfully demonstrated the effectiveness of this primal SVM learning using various 

datasets, including facial recognition, handwritten characters, and UCI datasets, showing its 

performance to be on par with or even superior to existing methods. 

Tayal et al. introduced a novel approach to addressing the primal embedded SVM problem, 

which emerges from embedding feature selection within nonlinear SVMs [21]. This work is 

significant for its development of a primal explicit max margin method, diverging from 

traditional dual formulations that are often computationally intensive. A key contribution of 

this study is its incorporation of feature selection directly into the training process of SVMs 

rather than handling it as an independent preprocessing phase. This method enhances 

efficiency by focusing on explicitly maximizing the margin within the feature space, offering 

a more streamlined and effective approach.  

Qing Wu and Wanqing Wang further expanded on this idea by transforming the SVM's 

primal programming problems into smooth, unconstrained minimization problems and 

seeking to solve them using the quick Newton-Armijo algorithm [22]. This approach 

represented a significant stride in efficiently addressing SVM optimization challenges. 

Hao et al. proposed a novel approach to multiple kernel learning (MKL) for support vector 

machines (SVMs), addressing the limitations of traditional single kernel methods [23]. They 

reformulate MKL as a BiConvex optimization problem, enabling it to be solved in the 

primal, unlike most existing methods that focus on dual solutions. This new method exhibits 

strong optimization convergence properties, distinguishing it from saddle point methods 

which often lack concrete convergence results. The researchers introduce a two-stage 

algorithm that alternates between optimizing canonical SVMs and kernel weights, using the 

truncated Newton method for efficient optimization of canonical SVMs. This approach 

represents a significant step forward in MKL, offering enhanced classification accuracy and 

interpretability while being more computationally efficient. 
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2.2.4 Advances in Linear Programming-Based SVM Learning 

In the broader SVM landscape, linear programming has experienced limited exploration. A 

few avant-garde methodologies have recently emerged, offering promising prospects:   

Researchers like Zhou et al., Hadzic et al., Tanveer and Malyscheff have investigated linear 

programming-based learning of SVMs, focusing on improving training speed and efficiency 

[33] [34] [35] [36].  Zhou et al. made a critical enhancement to linear programming SVMs. 

They refined linear programming SVMs by adjusting the Vapnik-Chervonenkis (VC) 

dimension boundary, which notably accelerated the training speed [33]. This was a pivotal 

step in SVM optimization, marking a shift towards more efficient models. 

Hadzic et al. effectively formulated the linear programming-based learning of support vector 

machines (SVM) for solving both regression and classification problems [34]. Tanveer 

presented a novel formulation of an exact 1-norm twin support vector machine (TWSVM) 

for classification using linear programming [35]. This model's solution is found by applying 

the Newton-Armijo technique to solve a pair of dual exterior penalty problems as 

unconstrained minimization problems. This approach represents a significant step in SVM 

optimization, providing a more efficient and effective method for SVM-based classification 

tasks. 

Malyscheff and Trafalis explored an innovative approach to SVM classification by 

introducing a linear programming-based kernel classifier [36]. This method deviates from 

traditional quadratic programming problems associated with basic SVM classifiers, instead 

of concentrating on reducing the epigraph's boundary throughout a range of functions, which 

acts as a gauge for slack or distance from the origin. The proposed classifier not only 

demonstrates generalization performance comparable to conventional SVMs but also offers 

improved computational complexity, making it particularly suitable for large-scale datasets 

and imbalanced learning tasks. Preliminary experiments indicate that this kernel classifier 

maintains accuracy within a close range of standard SVMs.  



  Literature Survey  

17 
 

2.3 Separable Programming and Piecewise Linear Approximation  

The application of separable programming principles has revolutionized the approach to 

complex, non-linear, and non-convex optimization problems, transforming them into more 

manageable linear programming tasks [18].  

The series of papers authored by D. Makwana and P. S. V. Nataraj offers a detailed 

investigation into the application of linear programming optimization techniques within the 

framework of Quantitative Feedback Theory (QFT) for control system design [5-8]. In their 

initial work, Nataraj and Makwana focused on developing a fixed-structure QFT controller 

utilizing piecewise linear approximation (PLA) and linear programming (LP) optimization 

methods [4]. This approach is significant for its automation aspect, which enhances the 

efficiency of the controller design process and reduces the potential for human error.  

Expanding upon this foundation, the authors further applied their PLA-LP optimization 

methodology to the synthesis of QFT prefilters, as elaborated [6]. This advancement 

demonstrates how automated processes can significantly improve the design of prefilters, 

which are essential for optimizing performance and mitigating disturbances in control 

systems. Later, Makwana and Nataraj marked a shift towards practical evaluation, focusing 

on the effectiveness of QFT control algorithms based on PLA-LP in an industrial plant 

emulator system [7] [8]. This study, noted for bridging the theoretical and practical domains, 

validates their methodologies' real-world applicability and effectiveness. Their subsequent 

research scope further extended to the synthesis of robust QFT-Proportional-Integral-

Derivative (PID) controllers, widely recognized for their extensive industrial applications 

[8]. Here, the use of PLA provided a unique approach to enhancing the robustness and 

reliability of PID controllers, underscoring the versatility and impact of their techniques. 

The PLA-LP method is particularly noted for its efficiency and speed, making it a valuable 

tool in the design of QFT controllers, which are essential in ensuring the robust performance 

of various control systems. The GUROBI optimizer solver has proven particularly adept at 

addressing the complex, non-linear aspects of QFT controller design [9]. By simplifying the 

process of designing QFT controllers, they have opened up new possibilities for the 

development of more efficient and effective control systems in various industrial and 

technological applications. Their approach exemplifies the potential of mathematical and 
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computational tools for solving real-world engineering problems, particularly complex 

optimization challenges.  

Complementing this, Zhao's research plays a crucial role in advancing the approach to 

complex non-linear problems [37]. It showcases the feasibility of approximating nonlinear 

functions with piecewise linear functions with high accuracy. This methodology paves the 

way for addressing originally nonlinear issues using more accessible linear programming 

methods. The transformation of nonlinear functions into piecewise linear forms 

revolutionizes the handling of these problems, reducing their complexity and the 

computational resources required for their solution. By converting these intricate nonlinear 

equations into more manageable linear segments, Zhao's approach significantly improves 

the tractability and efficiency of solving such problems. This is particularly valuable in areas 

that demand extensive computational resources and sophisticated mathematical modeling, 

like SVM optimization. Moreover, the integration of separable programming into this 

framework reflects an ongoing shift in the field towards more efficient, practical, and 

resource-conscious methods.  

Zhang and Wang explore an innovative approach to optimizing continuous nonlinear 

objective functions confined by linear constraints, utilizing piecewise-linear approximation 

[38]. Their method introduces a lattice piecewise-linear model in order to approximate the 

nonlinear objective function across the segments of a simplicial partition. This is followed 

by determining an approximately globally optimal solution through the solution of standard 

linear programs. Notably, their approach extends beyond separable objective functions and 

can be applied to more complex nonlinear problems. The practicability and versatility of this 

approach are demonstrated through a numerical example. This methodology aligns closely 

with the principles used in piecewise linear approximation-based SVMs, particularly in 

training primal SVMs, offering a valuable perspective and technique for handling complex 

optimization challenges in SVM training. 

2.4 Conclusion 

In conclusion, this literature survey highlights the significant evolution and diverse 

applications of support vector machines (SVM) in the field of machine learning. It highlights 

the shift from traditional dual optimization to more recent advancements in primal 
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optimization, a transition that promises enhanced accuracy and computational efficiency. 

This shift is pivotal, opening new possibilities for SVM applications across various domains.  

Overall, the survey provides a comprehensive overview of the key development research in 

SVM, focusing on optimization techniques, advanced formulations, and the broad spectrum 

of its applications. It highlights the evolving nature of SVM research, emphasizing the move 

towards more efficient and direct optimization methods, which are set to shape the future 

landscape of SVM applications in diverse fields. 
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CHAPTER - 3 

Framework Foundations of Separable 

Programming 

3.1 Introduction  

Within this research endeavor, separable programming stands as a foundational 

methodology pivotal for crafting the proposed Piecewise Linear Approximation SVM (PLA-

SVM). This chapter intricately explores the underlying mechanisms and theoretical 

constructs, shedding light on its indispensable role in our work's framework. 

Moreover, an introduction to the GUROBI Optimizer takes center stage, serving as a critical 

component in optimizing the PLA-SVM model. The dedicated section on GUROBI 

delineates how this solver, esteemed for its advanced optimization capabilities, adeptly 

tackles the optimization challenges inherent in PLA-SVM. Notably, its handling of SOS2 

variables plays a crucial role in this process. 

Lastly, a detailed explanation of piecewise linear modeling utilizing SOS2 variables 

accompanies a fitting example to elucidate its application. This chapter sets the stage for 

subsequent sections, unraveling the fundamental components essential to grasp the 

complexities and capabilities of the PLA-SVM methodology. 

3.2 Essentials of Separable Linear Programming  

In optimization, separable linear programming stands out as a crucial technique, particularly 

in dealing with inherently complex and nonlinear problems. Numerous optimization 

challenges across fields like economics, management, engineering, and biomedicine are 

formulated as nonlinear programming problems. The inherent non-convex nature of these 

problems often complicates the determination of their global optima. The pursuit of finding 

a globally optimal solution for nonlinear problems remains a significant obstacle in 

optimization theory. In recent years, piecewise linearization techniques have gained 
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widespread adoption as a means to approximate a global optimum. These techniques play a 

pivotal role in converting intricate nonlinear problems into more manageable linear 

programming or mixed-integer convex programming problems, as suggested in several 

studies [39]. 

Our design methodology is based on the principle that a piecewise linear function can 

sufficiently approximate any nonlinear function, as suggested in [40]. This approximation 

enables the transformation of a nonlinear problem into a linear format, facilitating the 

application of simpler and more efficient linear programming methods compared to their 

nonlinear counterparts. The Piecewise Linear Approximation (PLA) technique focuses on 

constructing a function  that aptly approximates a nonlinear function . The theory 

of PLA, initially introduced in [18], revolves around transforming non-linear, non-convex 

optimization problems into linear approximations through separable programming [5].  

A function is deemed non-separable when it cannot be decomposed into distinct functions. 

Conversely, an inequality-constrained problem is separable if its objective functions and/or 

constraints can be divided among the variables  as follows: 

 

Minimize                     (3.1)  

Subject to constraints: 

;                                (3.2) 

Here,  is a constant and  is a th constraint for the th variable. 

While the separability requirement might seem limiting in practical situations, 

transformation techniques can convert many non-separable functions into separable forms, 

as highlighted by [18]. 

Examples of Separable Functions: 

Separable functions can be represented as the sum or product of functions, each depending 

on a single variable [5]. Some examples include: 

1. : This function is a sum of  (only dependent on ) and  (only 

dependent on ). 
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2. : This linear function is a sum where each term depends on a separate 

variable:  on ,  on , and  on . 

3. : This is a sum of two exponential functions, where  depends solely on  

and  solely on . 

 
Examples of Non-Separable Functions: 

Non-separable functions involve interactions between variables that cannot be broken down 

into single-variable components. Some examples include: 

1. : This function represents the product of x and y, showing a direct interaction 

between the two variables. 

2. : In this quadratic function, the term  signifies an interaction between 

 and  that makes the function non-separable. 

3. : This trigonometric function involves the sine of the sum of  and , 

indicating a combined effect of both variables. 

 

To transform a non-separable function like  into a separable form, 

introducing a new variable  yields: 

 

This function is now a single-variable function of  with the added constraint 

. In optimization problems, employing such a transformation alters the nature of constraints 

and the solution space. The transformed problem is solved for , and the results are then 

interpreted in terms of  and  using the relation . 

A significant advantage of separable linear programming lies in its computational efficiency. 

This efficiency arises from leveraging linear programming solvers, generally more advanced 

and quicker than their nonlinear counterparts [18]. This approach extends beyond theoretical 

applications, providing practical solutions for complex, nonlinear optimization problems in 

real-world scenarios. 

3.3 Piecewise Linear Modeling through Separable Linear Programming  

The concept of piecewise linear approximation (PLA) within the framework of separable 

programming stands as an innovative approach in optimization. It serves as a method tailored 
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to confront the complexities inherent in nonlinear functions by approximating them through 

linear segments. This technique becomes particularly valuable when an exact analytical 

solution for a nonlinear problem is either unfeasible or overly intricate. 

At its core, PLA involves segmenting a nonlinear function into multiple linear pieces. Each 

segment approximates the function within a specific interval, ensuring that collectively, they 

provide an accurate representation of the overall function a piecewise linear model derived 

from the original nonlinear model. This linearization enables the application of linear 

programming methods to problems initially nonlinear in nature. 

Separable programming plays a pivotal role in PLA by enabling the decomposition of a 

complex, multi-variable function into simpler, single-variable functions. This decomposition 

is crucial for the linearization process as it simplifies the function, allowing it to be 

represented as a sum of piecewise linear functions. 

Figure 3.1 illustrates a separable piecewise linear function featuring breakpoints 

. These breakpoints represent the points where the function's direction changes. 

The figure also presents a piecewise linear approximation (PLA) of the non-linear function 

, denoted as . 

Here,   is defined over the closed intervals , , where the co-

ordinates , represent breakpoints . The Fig. 3.1 shows that at each 

of the line segments' ends, ,  given as,  

,                         (3.3) 

In Equation (3.3), the fraction   is a number between 0 and 1 for any value of  

between  and  

                           (3.4) 

So, Equation (3.3) can be expressed as: 

  

                              (3.5) 
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Now, introducing    and , we obtain 

                      (3.6) 

Here, 

;                          (3.7) 

Equation (3.6) describes  as a weighted combination of  and  within the 

specific interval . 

 

 

 

 

 

 

 

 

 

 

              FIGURE 3.1: PLA of Non-linear function 

 

 

Since, 

 

We get,  

   

    

                                               (3.8) 
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So, we can express any point x in the closed interval [ ] as 

                                                (3.9) 

Subject to 

                                             (3.10) 

This leads to the representation of  using a set of weighting variables ,   

by the equality: 

                                                   (3.11) 

Here, 

                                   (3.12) 

; ;                                    (3.13) 

In Equation (3.11),  represents piecewise linear approximation (PLA) of the original 

nonlinear function . Equation (3.13) must now include a constraint called SOS2 (Special 

order set of type 2) condition that no more than two adjacent -zero at 

once in a feasible solution in order to express  by . 

Equations (3.11), (3.12), and (3.13) define function rows, reference rows, and convexity 

-formulation" of the original non-linear 

function . This formulation aids in representing a Piecewise Linear Approximation 

(PLA) problem as a linear programming (LP) problem, often referred to as an approximated 

-formulation introduces binary  variables, identifying the active 

linear function within a specific interval. These weighting variables, denoted as 

recognized as Special Ordered Set type two (SOS2) variables. 

The SOS2 concept, introduced by Beale and Tomlin [41], is vital in addressing non-convex 

problems through ordered sets of variables. An SOS2 is essentially a sequence of adjacent 

variables, where no more than two neighboring elements can be non-zero in any feasible 

solution. These variables typically take values of 0 or 1, indicating the chosen linear function 

within the model. SOS2 variables are particularly useful in linear models to simulate non-

linear non-convex functions. In the context of Piecewise Linear Approximation (PLA), the 

key design variables are 's.  
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By resolving the approximated linear programming (LP) problem, optimal values for these 

 variables can be determined, leading to an optimal solution approximating the original 

non-linear separable function through a piecewise linear approach.                                                               

The application of PLA using separable programming extends across various fields, 

including engineering, economics, and management science. This method is particularly 

beneficial in scenarios where accurately describing the behavior of a nonlinear function is 

complex, and a simplified approximation can offer more manageable solutions. Its primary 

advantage lies in transforming a potentially intractable non-linear problem into a solvable 

linear problem, enabling the utilization of a wide array of linear optimization tools and 

techniques. 

In the work presented, the optimization problem for Support Vector Machines (SVM) is 

converted into an approximate linear programming (LP) problem. This problem is then 

solved using the GUROBI Optimizer. The GUROBI Optimizers, equipped with capabilities 

for handling Special Ordered Set type two (SOS2) variables, employs branch and bound and 

mixed integer programming techniques [5] [41]. It is crucial to note that the selection of 

intervals for approximation and the precision of this approximation depend on the specific 

problem addressed and the particular needs of the application. 

3.3.1 Generalized Approach to Piecewise Linear Approximation Problem 

To develop a generalized model for Piecewise Linear Approximation (PLA), it is essential 

to construct the formulation in accordance with the principles detailed in Equations (3.1) and 

 in our model has predetermined lower 

and upper bounds set as  and  respectively. Additionally, we divide each variable  

into  distinct breakpoints or intervals. In this structure,  represents the value of  at the 

-th subdivision point, resulting in the sequence: 

             (3.14) 

We then approach the objective functions  and constraint functions for each j-

th constraint by approximating them as piecewise linear functions  and  

respectively. This leads to the general PLA formulation expressed as: 
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                                  (3.15) 

 where  

So, the approximating functions  and   are derived as: 

                  (3.16) 

    ,           (3.17) 

-formulation, we reformulate the general separable nonlinear programming 

problem of Equation (3.1) and (3.2) into an approximating linear programming (LP) problem 

as: 

Minimize                       (3.18) 

Subject to 

; ;                                  (3.19)

  

                                     (3.20) 

; ;                                             (3.21) 

Additionally, we apply the Special Ordered Set type 2 (SOS2) conditions, restricting that for 

each i, no more than two 's can be positive, and only adjacent 's (i.e.,  and  or 

 and ) can be positive. The design variables in Equations (3.18)  (3.21) are the  

variables. The values of  and  are derived by evaluating the functions  and 

 at predetermined points . 

This set of Equations (3.18)  -formulation for  and , 

employed to achieve a piecewise linear approximation of these functions. Solving this PLA 

model typically involves using a solver such as the GUROBI Optimizer [9], adept at 

-formulation and seamlessly integrating SOS2 variables within its solving 

process. 
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3.4 GUROBI Solver in PLA-SVM Optimization 

In the intricate landscape of mathematical optimization, the GUROBI Optimizer, acclaimed 

as the 'World's Fastest Solver', stands as a cornerstone tool, especially in the realm of 

Piecewise Linear Approximation-based optimization techniques [9] [19]. This section sheds 

light on how GUROBI Optimizer effectively manages the PLA-SVM problem, specifically 

through the utilization of SOS2 variables. 

In this study, we harness the GUROBI Optimizer, available for academic purposes at no 

cost. GUROBI offers a comprehensive suite of optimization solutions, including parallel 

barrier solvers for quadratically constrained programming (QCP), mixed-integer linear 

(MILP), mixed-integer quadratic (MIQP), and mixed-integer quadratically constrained 

programming (MIQCP), as well as advanced simplex and parallel barrier solvers for linear 

(LP) and quadratic programming (QP). Notably, GUROBI's MIP solver features shared 

memory parallelism, efficiently employing any number of processors and their cores. Its 

deterministic implementation ensures consistent solution paths across separate runs on the 

same model. When allowed to run to optimality without restrictive termination criteria, 

GUROBI can determine the global minimum of the piecewise-linear model. 

3.4.1 Role of GUROBI in PLA-SVM Optimization 

Within the context of PLA-SVM optimization, GUROBI plays a pivotal role in managing 

the piecewise linear approximation of the primal SVM problem. This involves the 

conversion of the inherently nonlinear SVM optimization problem into an approximately 

linear programming format, an area where GUROBI demonstrates expertise. 

One of GUROBI's key features, making it suitable for PLA-SVM optimization, is its 

capability to efficiently process Special Ordered Set Type 2 (SOS2) variables [41]. SOS2 

variables are employed in mathematical modeling to represent situations where only two 

adjacent variables in a set can be non-zero at a time. This functionality is critical in piecewise 

linear approximation, enabling accurate representations of nonlinear functions as linear 

segments. 

GUROBI employs a branch and bound algorithm, a method for finding optimal solutions to 

various optimization problems, including those with integer variables. In the context of PLA-
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SVM, GUROBI's branch and bound approach ensures that the solution to the linear 

programming model isn't merely locally optimal but globally optimal. This is particularly 

significant in SVM optimization, where determining the most accurate classification 

boundary holds paramount importance. 

3.4.2 Computational Efficiency and Accuracy 

The utilization of GUROBI Optimizer in solving the PLA-SVM model yields substantial 

enhancements in both computational efficiency and accuracy. By leveraging GUROBI's 

advanced algorithms and processing power, the PLA-SVM model experiences reduced 

training times and improved performance metrics, a critical aspect for practical applications 

dealing with extensive datasets. 

In summary, the GUROBI Optimizer stands as a potent tool in addressing the PLA-SVM 

optimization problem, primarily due to its adeptness in managing SOS2 variables and 

ensuring global optimality. Its integration into the PLA-SVM framework exemplifies the 

synergy between advanced optimization techniques and the development of machine 

learning models. 

3.5 Application Example to Quadratic Optimization Problem 

To elucidate how GUROBI solves a quadratic optimization problem using Special Ordered 

Sets Type 2 (SOS2) variables, we first define a typical convex quadratic function and 

systematically walk through the steps involved in solving it with GUROBI. 

Consider a specific convex quadratic function, say , and aim to 

minimize it subject to  being in the range . The process involves discretizing this 

range, applying piecewise linear approximation using SOS2, setting up the GUROBI model 

with these constraints, and then running the optimizer to find the minimal value of . 

Through these steps, GUROBI adeptly manages the complexities of the quadratic function 

by transforming it into a linear problem, a task it excels in, especially with the precision and 

control offered by SOS2 variables. The following steps explain how a Piecewise Linear 

Approximation (PLA) problem is modeled using SOS2 variables and solved using GUROBI 

solver. 
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Step 1) Piecewise Linear Approximation using SOS2 Variables: 

 Discretize the Domain: Choose a set of points  covering the range of . 

These points serve as breakpoints for the piecewise linear approximation. For the 

given example, choose points within the range [0, 10] to serve as breakpoints. For 

 

 Evaluate Function Values at Breakpoints: Compute  at each breakpoint to 

obtain . For the chosen points, values of  are 1, -1, -9, -

9, and 21, respectively. 

 Define SOS2 Variables: Introduce SOS2 variables 's corresponding to each 

breakpoint. For the given example, SOS2 variables are , and , each 

corresponding to a breakpoint, ensuring only two adjacent variables can be non-zero 

at a time [5], facilitating a piecewise linear approximation. 

Step 2) Formulating the Approximated Objective Function: 

 The objective function in its linear approximated form becomes: 

 

Here,  denotes the Piecewise Linear Approximation (PLA) of the original quadratic 

function  .The value of x can be expressed as:  

 

Step 3) Setting Up the GUROBI Model: 

 Initialize Model: Define the model in the GUROBI environment. 

 Add Variables: Include the SOS2 variables and variable . 

 Set Objective: Add the approximated objective function to the model. 

 Add SOS2 Constraints: Define the SOS2 constraint in GUROBI, allowing only two 

adjacent  variables to be non-zero simultaneously. 

 Additional Constraints: As  lies in the range [0, 10], add constraints to ensure: 

 and . 
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Step 4) Optimization and Solution: 

 Run the Optimization: Execute the optimization in GUROBI. 

 Find Optimal Solution: GUROBI utilizes advanced algorithms to find the minimal 

value of the approximated function  under specified constraints. 

Step 5) Interpreting Results: 

 Obtain Optimal Values: Extract the optimal values of  and  variables. 

 Determine Minimal Value of : Use the optimal values to find the minimal value 

of the original function . 

The solution provides the minimal value of  within the specified range, alongside the 

values of  and  variables leading to this minimum. 

In practice, implementing this in GUROBI Optimizer would require coding in a language 

like MATLAB, Python, or C++ using the GUROBI Interactive Shell as depicted in Fig. 3.2. 

 

 

 

 

 

 

FIGURE 3.2: GUROBI Interactive Shell [19] 

 

In the present work, MATLAB was selected for modeling PLA-SVM with GUROBI due to 

its superior numerical computing capabilities and user-friendly environment, ideal for rapid 

prototyping and visualization [42]. This choice leverages MATLAB's extensive tools and 

community support in engineering and scientific fields, ensuring efficient development and 

integration with existing optimization workflows, compared to more generic programming 

environments like Python or C++. 
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3.6  Conclusion 

This chapter embarked on a comprehensive exploration of separable programming 

methodologies that constitute the foundation of the proposed Piecewise Linear 

Approximation SVM (PLA-SVM). A key highlight of this chapter is the introduction and 

detailed discussion of the GUROBI Optimizer. Renowned for its advanced optimization 

capabilities, GUROBI notably addresses the optimization challenges posed by PLA-SVM 

efficiently.  

The essentials of separable linear programming were elucidated, emphasizing its 

significance in addressing inherently complex and nonlinear problems. This approach finds 

widespread applications across diverse fields, including economics, management, 

engineering, and biomedical sciences. The primary emphasis lies in approximating global 

optima for nonlinear problems, frequently characterized by their nonconvex nature. 
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CHAPTER - 4 

Design of Hard-margin Piecewise Linear 

Approximation based Support Vector Machine 

4.1 Introduction 

In the evolving landscape of machine learning and data classification, Support Vector 

Machines (SVMs) are renowned for their robustness and efficacy in handling linearly 

separable data. This chapter explores a new variant of SVMs, the Hard-margin Piecewise 

Linear Approximation based SVM (PLA-SVM). The proposed SVM is designed to tackle 

the inherent complexities and nuances of high-dimensional data spaces, where traditional 

linear models often falter. Its core principle revolves around constructing a hyperplane that 

maximizes the margin between different data classes, ensuring optimal separation and 

enhanced classification accuracy.  

Despite its apparent advantages, the conventional formulation of Hard-margin SVMs [2] 

encounters challenges, especially in terms of computational complexity and scalability with 

large datasets. To address these issues, the proposed method introduces an innovative 

approach: it approximates the decision boundary through piecewise linear functions. This 

technique not only retains the robustness of traditional SVMs but also enhances 

computational efficiency, making it more suitable for large-scale applications. 

This chapter is structured to provide a comprehensive understanding of the Hard-margin 

PLA-SVM, beginning with a foundational overview of the theory behind primal Hard-

margin SVMs. It then progresses to articulate the specific formulation of the Hard-margin 

PLA-SVM problem, laying the groundwork for the proposed methodology. Detailed insights 

-formulation of the objective function, constraints, and the optimization problem 

are presented, offering a thorough exploration of the underpinning mechanics of this 

innovative approach. 
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The chapter culminates with the presentation of the proposed Hard-margin PLA-SVM 

algorithm along with its detailed explanation. The chapter concludes by clearly summarizing 

the key ideas and successes of our study.  

4.2 The Theoretical Landscape of Primal Hard-margin SVMs 

Support vector machines (SVMs) are a type of supervised learning algorithm notable for 

their performance in high-dimensional environments. These techniques are commonly 

applied in areas such as classification, regression, and outlier detection.  

As we initiate a detailed exploration of Primal Hard-margin SVMs, it is instructive to first 

consider the dual formulation of SVMs, an approach that has traditionally dominated the 

landscape of SVM theory. The dual formulation presents a unique perspective, focusing on 

optimizing a Lagrangian function subject to certain constraints. This approach is well-

regarded for its elegance and the insights it offers into the geometry of data classification 

problems, particularly in high-dimensional spaces. Central to the dual formulation is the 

concept of Lagrange multipliers, which serve as pivotal tools in transforming the 

optimization problem into a dual problem.  

However, despite the richness and depth of the dual formulation, our journey leads us to the 

primal perspective of SVMs. The primal formulation, while less explored, offers a direct and 

intuitive approach to SVM optimization. In contrast to the dual form, the primal form 

directly optimizes the original problem without the need for Lagrange multipliers, providing 

a more straightforward interpretation and implementation.  

Focusing on the primal aspect, we explore the specifics of the Hard-margin SVM, a variant 

that stands out for its robustness in handling linearly separable data. The primal SVM seeks 

to find the optimal hyperplane by minimizing an objective function that represents the 

margin between the data points and the decision boundary.  

4.2.1 The Primal Formulation of SVM  

The Hard-margin SVM in its primal formulation is best suited for datasets that are linearly 

separable, where a clear margin can be established between the different classes. At the heart 
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of the primal hard-margin SVM is the objective to find the optimal separating hyperplane 

that maximizes the margin between the classes. 

 

 

 

 

 

 

 

FIGURE 4.1: Hyper plane of Hard-margin SVM 

Figure 4.1 shows the hyperplane of Hard-margin SVM. The margin is defined as the distance 

between the nearest data points from each class, known as support vectors and the 

hyperplane. The wider this margin, the better the generalization of the classifier to new data. 

Mathematically, the primal formulation of a Hard-margin SVM aims to minimize an 

objective function that is representative of this margin. Consider a binary classification 

problem with training examples ,  i=1 to n, where and . 

The Hard-margin primal SVM design problem is to: Obtain weight vector  and bias b 

of hyperplane solving the following optimization problem, 

                                                                      (4.1) 

Such that, the following constraints are satisfied.   

 for i n.                          (4.2) 

 

Here,  and  

The decision function to classify a new data point is given as: 
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Here,  represents the weight vector perpendicular to the hyperplane, b is the bias term (the 

offset of the hyperplane from the origin). The objective function  essentially 

minimizes the norm of the weight vector, which is inversely proportional to the margin. 

Therefore, minimizing this function maximizes the margin. 

One of the key strengths of the primal formulation of hard-margin SVM is its simplicity and 

interpretability. The solution directly relates to the geometry of the data, making it easier to 

visualize and understand. Moreover, the hard-margin SVM in its primal form can be 

efficiently solved using quadratic programming techniques, making it computationally 

feasible for a range of applications. 

However, it's important to note that the Hard-margin SVM assumes perfect separability of 

the data. In real-world scenarios where data may not be perfectly separable, or when the data 

contains outliers, the hard-margin approach might not be the most suitable. In such cases, 

soft-margin SVMs or other variations may be more appropriate. 

4.3 The Proposed Methodology: Hard-margin Piecewise Linear 

Approximation based SVM (PLA-SVM) 

In this section, a Hard-margin PLA- -formulation of 

the objective function and constraints of a primal SVM is derived.  The proposed PLA-SVM 

-formulation of the Hard-margin SVM optimization 

problem. 

4.3.1 The Formulation of a Hard-margin PLA-SVM Problem 

To address the challenge posed by the nonlinear nature of the hard-margin SVM 

optimization problem and leverage the efficiency of linear programming techniques, we 

suggest a reconfiguration of the problem into a Piecewise Linear Approximation (PLA) 

problem. This method involves breaking down the original SVM optimization problem into 

a sequence of linear sub problems, each of which can be solved more easily. To facilitate 

this, we introduce a series of lambda variables, which serve to approximate both the 

objective function and the constraints of the Hard- -formulations 

transform the Hard-margin SVM optimization problem into a piecewise linear programming 
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problem. In this format, the decision boundary is represented as a series of linear segments. 

This approach not only simplifies the problem but also enhances convergence and 

scalability, making it more manageable and efficient to solve. 

In Equations (4.1) and (4.2), the constraints are linear, and the objective function is the 

quadratic and separable functions of the SVM parameters W and b. So, the aforementioned 

Hard-margin SVM optimization problem is perfectly suited to be modeled as a separable 

linear programming problem. The optimal values for vectors W and b in this optimization 

problem are those that maximize the distance between classes. The Hard-margin PLA-SVM 

- formulation of the objective function in Equation 

(4.1) and constraints ., in Equation (4.2). 

4.3.2 -formulation of PLA-SVM Objective Function 

put feature space as , where j m, m = number of 

features/predictors in the dataset and, label or output as Yi where i =1,2,3... n, n = number of 

observations in the dataset. We define Xji as a value of jth feature at ith data point in the 

dataset. 

In the objective function Equation (4.1), W is a weight vector and the number of elements of 

W are equal to a number of features (m) in the given dataset as, 

, m = number of features.  

Hence, Equation (4.1) can be written as, 

,                        (4.4)    

 

] (4.5)

Equation (4.1) is already in the separable form of functions 1( ), 2( ) . . . m( m) 

defined as, 
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This can be written as; 

, j= 1,2, 3....m               (4.6) 

To obtain the PLA of Equation (4.1) using -formulation of primal SVM, l

initial search domain for the elements of weight vector as 

                         (4.7) 

Here, 

 = Lower bound on j 

= Upper bound on j, j= 1,2, 3....m  

We need to define the number of breakpoints or intervals required for the initial search 

domains of Equation (4.7) for carrying out piecewise linear approximation of Equations (4.1) 

and (4.2). 

...... as the number of breakpoints or intervals of the initial search 

domain of respectively. From the theory of separable programming in 

Chapter 3, we can write  to   
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                  (4.8)  

 

Here, 

 

 

 

 

 

 

 

                            : 

 ,       (4.9)  

Moreover, there is an additional restriction that only two adjacent  variables in a given w

can be non-zero at a time. The -formulation of the PLA-SVM objective function  can be 

derived using Equation (4.1) as follows, 

                                                            (4.10)     

Here, 

is the value of the function evaluated at kth break point of the initial 

search domain . 
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-formulation of the objective function  obtained in Equation (4.10) is written 

as, 

                                                                                        (4.11)    

Where, m = number of features,  = number of break points in the initial search domain 

of . 

4.3.3 -formulation of PLA-SVM Constraints 

It is evident from Equation (4.2) that the number of constraints is equal to the number of data 

 as a constraint and  -formulation of constrains 

for each data point in the dataset, i.e., i n. So, the constraint in Equation (4.2) 

can be written as 

                                                                   (4.12)  

     

 

Simplifying we get, 

1                                         (4.13)  

Here, 

i= 1,2, 3....n, number of data points 

j m number of features and  

 is a value of jth feature at ith data point in the dataset. 

b as  and 

initial search domain as, 
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Here, 

 = Lower bound on b and = Upper bound on b 

-formulation of constraints as, 

      (4.14)  

-formulation of constrain constraints  is derived as 

                                          (4.15)  

 

                                                                            (4.16) 

                                                                              (4.17)    

In addition to Equations (4.16) and (4.17), we impose the SOS2 constraints on each 

defined for variables wj and b that no more than two neighboring variables may be non-zero 

in a feasible solution [5]. 

4.3.4 -formulation of PLA-SVM Optimization Problem 

In this section, we venture into the pivotal phase of our exploration - -formulation of 

the Hard-margin PLA-SVM optimization problem. Building upon the foundational work 

-formulations 

for the objective function and the constraints [8], we now integrate these elements into a 

cohesive optimization framework.  

The Hard-margin PLA-SVM optimization problem is expressed as, 

Min                                                                                   (4.18)  

Subject to constrain  as, 
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                                                                 (4.19)                   

In addition to constraints of Equation (4.19), we need to add convexity conditions and SOS2 

-

(SOS2 variables) defined for SVM hyper parameters W and b that is, , j= m, k = 

0, 1, 2, 3, ......,  and , k= 0, 1, 2, 3, ......,  respectively. 

Any suitable optimizer solver, such as GUROBI [16], which employs mixed integer 

programming and the branch and bound algorithm, can effectively solve the proposed Hard-

margin PLA-SVM problem. The optimal values of PLA-SVM parameters W and b are 

 

                               (4.20) 

Here, 

 

 

                . 

                . 

            

  and 

                                  (4.21)

   

The optimal Hard-margin PLA-SVM parameters and  is used to classify an 

unknown sample using following decision function as, 

                              (4.22)      
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The optimal (minimum) values of the objective function  of proposed PLA-SVM can be 

obtained as 

                                                      (4.23)         

4.4 The Proposed Hard-margin PLA-SVM Algorithm 

In this section, we introduce an innovative aspect of the PLA-SVM Algorithm. This part of 

our study represents an advancement in SVM methodologies, specifically designed for 

situations where the piecewise linear approximation can greatly enhance the effectiveness 

and efficiency of the model. 

At the outset, we lay the groundwork by explaining the conceptual and mathematical 

framework of the algorithm, with a special focus on the piecewise linear approximation 

technique. This technique is the cornerstone of our proposed model, offering a refined and 

flexible approach to handling primal SVM design problem. 

The next part of this section is dedicated to a step-by-step explanation of the algorithm, from 

its initial setup to the final stages of decision-making. 

Algorithm 1: The Hard-margin PLA-SVM Algorithm 

Input: The training data set  , The testing dataset ,  a prespecified 
-04). 

Output:  

Initialization: Initialize ,   

Define ......  and  for   and b respectively. 

1: Choose K for K cross-validation 

2:  Obtain PLA of Hard  margin SVM  

For   

 

Subject to:   
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and convexity constraints, 

=1,  

3  and   

4: Initiate optimization of the PLA-SVM in Step 2 using GUROBI solver.  

5: If the solution is infeasible then, go to initialization step, change the initial values of 
  ......  and repeat. 

6: Obtain the optimal values of design variables   and 

 

7: Obtain an optimal value of PLA-SVM parameters using design 

variables of Step 6 as,  

and   

8: Test  using the decision function,  

9: Evaluate the obtained PLA-SVM Model and Deploy. 

4.4.1 Explanation of The Algorithm 1 

In this section, we explore into the details of the Hard-margin PLA-SVM algorithm. We start 

with specifying the inputs: the training dataset, known as , the testing dataset 

,   

of the algorithm is to determine the optimal values for the SVM parameters as an output. 

The initial step in our algorithm is crucial - it's where we set the stage for everything that 

follows. We establish the weights, noted as ,  

Additionally, we define number of break points for each weight and the bias, which are 

critical in guiding the algorithm's process. 

Following this, the algorithm engages in a process of cross-validation and the construction 

of the Hard-margin PLA-SVM. This stage is a strategic minimization of an objective 

function, intricately connected to the weights and their lambda formulations. The constraints 

set here are vital as they ensure the correct classification of the training data, adhering to the 

lambda constraints for both weights and bias. 
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The optimization of the Hard-margin PLA-SVM is where the GUROBI solver comes into 

play. This advanced solver is tasked with finding the most optimal values for the lambda 

variables, striking a balance between accuracy and efficiency for the SVM model. 

However, our algorithm is designed to recognize and address any infeasibility in the 

solutions provided by the GUROBI solver. In such cases, the algorithm doesn't just stop; it 

revisits the initialization phase, adjusts the initial values, and re-attempts the optimization - 

a testament to its robustness and adaptability. 

Once a feasible solution is in hand, the algorithm meticulously calculates the optimal values 

of the design variables. This step is critical as it leads to the computation of the optimal PLA-

SVM parameters, which involves a careful aggregation of lambda coefficients and their 

corresponding weights and biases. 

The obtained Hard-margin PLA-SVM is applied to the testing dataset. Here, the decision 

function, powered by the optimally calculated weights and biases, classifies the testing data, 

showcasing the practical utility of the algorithm. 

Finally, the performance of the PLA-SVM model is rigorously evaluated. This evaluation is 

an essential step that determines whether the model is ready for practical deployment. Upon 

confirming its satisfactory performance, the model is then deployed for real-world 

applications. 

4.5 Conclusion 

In this chapter, we have commenced an in-depth exploration of the design of Hard-Margin 

PLA-SVM, a novel and efficient approach in machine learning for data classification. The 

foundational theories of primal hard-margin SVMs has been presented to intricate 

formulation of the proposed PLA- -formulations of 

the objective function and constraints, and the subsequent synthesis into a cohesive 

optimization problem, we have demonstrated a methodology that combines the robustness 

of hard-margin SVMs with the computational efficiency of piecewise linear approximations. 

This approach addresses critical challenges in the field, such as handling high-dimensional 

data and ensuring computational scalability due to its linear programming framework. The 

formulation and optimization strategies discussed here have significant practical 
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implications, providing a pathway for more accurate and computationally efficient data 

classification in various applications. 
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CHAPTER  5 

Design of Soft-margin Piecewise Linear 

Approximation based Support Vector Machine 

 

5.1 Introduction 

In this chapter, we present the details of the Soft-margin Piecewise Linear Approximation-

Based Support Vector Machine (PLA-SVM), a sophisticated extension of SVMs tailored for 

datasets where a hard margin is impractical. This chapter aims to provide a comprehensive 

understanding of Soft-margin SVMs, especially in their primal form. We start by exploring 

the theoretical foundations of primal soft-margin SVMs, setting the stage for a deeper 

understanding of their functionality and significance. 

Moving forward, we propose a novel methodology for Soft-margin PLA-SVM in which we 

first formulate the Soft-margin PLA-SVM problem. This section is pivotal in illustrating 

how the PLA-SVM framework is adjusted to accommodate the soft-margin concept, a key 

aspect when dealing with noisy or overlapping data classes. This methodology is dissected 

into detailed -formulations of the objective function, constraints, 

and the optimization problem. 

The highlight of this chapter is the presentation of a newly proposed Soft-margin PLA-SVM 

algorithm, tailored to leverage the advantages of Soft-margin SVMs in conjunction with 

PLA. This algorithm represents a new advancement in optimizing SVM, promising 

enhanced performance and adaptability in various applications. 

As we approach the conclusion, we also introduce the proposed PLA-SVM architecture, 

providing insights into its practical implementation and potential impact. The limitations 

pertaining to the proposed approach has been discussed in details.  The chapter culminates 

with a conclusion that synthesizes the key findings and implications of this innovative 

approach. 
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5.2 The Theoretical Landscape of Primal Soft-margin SVMs 

SVMs work by finding a hyperplane that maximally separates the different classes of data 

points in the feature space. However, in real-world scenarios, it is often difficult to find a 

hyperplane that completely separates the classes due to noisy or overlapping data points. In 

such cases, no single hyperplane can perfectly separate the two classes and hard margin 

SVM may fail or produce overfitting. To deal with this situation, a modification to the SVM 

algorithm called soft -margin SVM was introduced by [1]. 

Soft-margin SVM addresses this limitation by allowing some misclassifications (errors) to 

occur in the training data. It introduces a "slack variable" for each data point, which allows 

the margin to be violated to a certain extent. The objective of a soft-margin SVM is to find 

the hyperplane that achieves a trade-off between maximizing the margin and minimizing the 

errors. The slack variables control the amount of error tolerated, and the algorithm aims to 

minimize them while still maximizing the margin. Soft-margin SVM allows for some 

misclassification of data points by allowing some of them to fall on the wrong side of the 

separating hyperplane. The objective of the Soft-margin SVM is to find a hyperplane that 

maximizes the margin between the two classes while minimizing the sum of the slack 

variables. The margin is defined as the distance between the hyperplane and the closest data 

points from each class. The slack variables are defined as the distances between the data 

points and the hyperplane, normalized by the margin.  

Figure 5.1 illustrates the Soft - margin SVM for a two-dimensional data set that is not linearly 

separable. It shows the separating hyperplane which allows some misclassification with the 

i, where i = 1 to n, n = number of observations. 

The primal formulation of the soft-margin SVM is a way to express the optimization problem 

in terms of the original variables, i.e., the weight vector w and the bias term b, rather than 

the dual variables that are used in the dual formulation.  
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                                                    FIGURE 5.1: Hyper plane of Soft-margin SVM  

 

The primal formulation of soft-margin SVM as a quadratic optimization problem is given 

as:  

Objective Function:  :                       (5.1) 

Subject to Constraints: 

 =                                              (5.2) 

i i = 1, 2, ..., n 

In the above Equations (5.1) and (5.2), we have, 

as the feature vector of ith training example 

 as the corresponding class label (+1 or -1) 

 as the weight vector 

 as the bias term 

 as the number of training examples 

i as the slack variable representing the degree of misclassification for the ith example 

 as the regularization parameter, controlling the trade-off between maximizing the margin 

and minimizing the misclassifications. A larger  allows for fewer misclassifications but 

may result in a narrower margin 
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The objective function consists of two terms: 

, aims to maximize the margin by minimizing the norm of the 

weight vector. 

penalizes misclassifications, where = 1 is called hinge loss 

while  is quadratic loss. The regularization parameter  determines the importance of 

minimizing misclassifications relative to maximizing the margin. The inequality constraint 

ensures that each training example lies on the correct side of the decision boundary, allowing 

i on the ith example.  Specifically, for each data point , the 

product  should be greater than or equal to 1  i, which means that the data 

i = 0. If any  is misclassified but still on the correct side 

of the hyperplane then 0 i < 1. The slack variables are constrained to be non-negative, 

since they represent errors in classification.  

In the Fig. 5.1, the blue dots and red dots represent the two classes of data points. The solid 

black line is the decision boundary for the SVM classifier without the slack variables. It can 

be seen that the decision boundary does not perfectly separate the two classes of data points. 

To allow for some misclassification, the soft-margin SVM introduces slack variables, 

represented by the dashed lines. The slack variables allow for some data points to fall on the 

wrong side of the decision boundary, but penalize the classifier for doing so. The dotted lines 

represent the margin, which is the distance between the decision boundary and the closest 

data points from each class. By adjusting the value of the regularization parameter , the 

soft-margin SVM can be tuned to either allow for more or less misclassification of data 

points. A higher value of  will result in a decision boundary that allows for less 

misclassification, but may be overly sensitive to noise in the data. A lower value of  will 

result in a decision boundary that allows for more misclassification, but may not generalize 

well to new data.  

The primal SVM optimization problem in Equations (5.1) and (5.2) can be solved using any 

suitable optimization techniques such as gradient descent or quadratic programming to find 

the optimal values of , b i that minimize the objective function subject to the given 

constraints. Once the optimal values are found, the decision function 

 is used to classify a new sample data . 
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5.3 The Proposed Methodology: Soft-margin Piecewise Linear 

Approximation based SVM (PLA-SVM) 

In the pursuit of enhancing the efficiency and applicability of Support Vector Machines 

(SVMs) for classification tasks, this section introduces a novel approach to tackle the primal 

Soft margin SVM optimization problem. In this section, we present our approach to solving 

the primal Soft-margin SVM optimization problem using a piecewise linear approximation 

(PLA) technique based on the -formulations of the non-linear objective function and linear 

constraints. 

 

Our methodology is designed to address the challenges associated with solving the Soft-

margin SVM problem, particularly in scenarios where non-linear separability exists. We 

-formulations to 

render the problem more amenable to efficient optimization techniques. The traditional soft-

margin SVM, while a potent tool for pattern recognition and classification, poses 

computational challenges when confronted with datasets that exhibit non-linear separability 

or are characterized by high dimensionality. These challenges stem from the inherently non-

convex and non-linear nature of the original optimization problem, which often necessitates 

complex numerical optimization methods. 

 

Our proposed methodology addresses these computational challenges by transforming the 

primal Soft-margin SVM problem into a piecewise linear approximation, thus casting it into 

the domain of linear programming. The crux of our approach lies in the introduction of 

lambda variables, which enable us to approximate the SVM objective function and 

constraints with piecewise linear segments. This novel representation not only preserves the 

essence of the SVM's geometric interpretation but also endows it with several desirable 

properties.   

 

In the following subsections, we will explore the specifies of our proposed methodology, 

explaining the formulation as a piecewise linear approximation and presenting the 

algorithms that underpin this innovative approach.  
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5.3.1 The Formulation of a Soft-margin PLA-SVM Problem 

To bridge the gap between the non-linear nature of the Soft-margin SVM optimization 

problem and the tractability of linear programming techniques, we propose to reformulate 

the problem as a PLA problem. This involves representing the original SVM optimization 

problem in terms of a series of linear sub problems that can be efficiently solved. We achieve 

this by introducing a set of lambda variables to approximate the objective function and 

constraints of the soft margin SVM. The - formulations enable us to represent the soft-

margin SVM optimization problem as a piecewise linear program, where the decision 

boundary is approximated as a combination of linear segments, allowing for better 

convergence and scalability. 

In Equation (5.1) and (5.2), the constraints are expressed as linear functions of the variables 

, b and  . The objective function, on the other hand, is distinctively quadratic and 

separable. So, the aforementioned primal Soft-margin SVM optimization problem is 

perfectly suited to be modelled as a separable linear programming problem. The optimal 

values for vectors W and b together with feasible values of  in this optimization problem 

are those that maximize the distance between classes and minimize the classification error. 

The Soft-margin PLA- - formulation of 

objective function in Equation (5.1) and constraints ., in Equation 

(5.2). 

5.3.2 The -formulation of Soft-margin PLA-SVM Objective Function 

In this subsection -formulation of the Soft-margin PLA-SVM 

Objective Function, we explore the mathematical structure underlying this approach. 

denote input feature space as , where j m, m = number of features/predictors 

in dataset and, label or output as yi where i =1,2,3... n, n = number of observations in the 

dataset. We define Xji as a value of jth feature at ith data point in the dataset. In the present 

formulation of PLA-SVM, we have considered  = 

while p =  

Now, the objective function of primal soft-margin SVM given in Equation (5.1) can be 

written as,  
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]                       (5.3) 

 

Equation (5.3) is already in the separable form as all the terms are the functions of a single 

variable while regularization parameter  is prefixed. The separability of the objective 

function makes its piecewise linear approximation smooth. The separable terms of   can be 

written as of functions 

1( ), 2( ) . . .  1), 2 n)  

Here, 

,     and  1) =  2) = 

n) =  

This can be written as; 

 , j m, i n                                     (5.4) 

  and slack 

variables as    and       respectively.                                                

Here,  = Lower bound on j,   = Lower bound on , = Upper bound on j, = 

Upper bound on    where j = 1,2,3...m, i = n. 

We need to define the number of breakpoints or intervals required for the initial search 

domains of  and for carrying out piecewise linear approximation of Equation (5.1) and 

Equation (5.2 ...... and ...... as the number of 

breakpoints or intervals of the initial search domain of and 

 respectively. From the theory of separable programming explained in 

Chapter 3, we can write  to  and 

(SOS2) variables and breakpoints as, 
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                                                              (5.5) 

 

Here,  is the 0th breakpoint of wight vector element  and so on.  is the 0th breakpoint 

of slack variable   for first data point of the dataset and so on. We can write breakpoints of 

the and  as, 

 

                                

 

 

 

                             

                                                             (5.6) 

 

 and slack variables  for given datasets is derived as, 

=1 

 =1 

                        

=1 

=1 

=1  

                        

=1 ,                                                         (5.7) 
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In addition to the convexity conditions of Equation (5.7), we need to impose an additional 

SOS2 condition that only two adjacent  variables in a given  can be non-zero at 

a time. Plugging the linear combinations of   to  and obtained in Equation (5.5) 

into Equation (5.7), we get, 

+         (5.8) 

Here, is the value of the function  and )  is the value of the 

function evaluated at kth  break point of the initial search domain of 

   and       respectively.  Finally, using the Equation (5.8), we can derive 

-formulation of the objective function  of primal soft-margin SVM optimization 

problem in Equation (5.1) as, 

 

        (5.9) 

 

The proposed derivation of soft-margin -formulation can be straight 

forward applied for the value of  =  

5.3.3 The -formulation of Soft-margin PLA-SVM Constraints 

While the objective function of the soft-margin SVM problem in Equation (5.1) is inherently 

quadratic and non-linear in nature, the constraints in Equation (5.2) are linear inequalities. 

-formulations for these linear constraints, we aim to maintain a consistent 

-lambda formulations for both the 

objective function and linear constraints enable us to seamlessly integrate them into a unified 
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piecewise linear approximation based linear programming optimization problem [5]. This 

unified approach not only simplifies the optimization process but also enhances the overall 

tractability of the problem.  

Many optimization solvers, including the GUROBI optimizer, are designed to handle linear 

constraints efficiently. By formulating the linear constraints in terms of lambda variables, 

we leverage the strengths of these solvers, which are particularly adept at solving linear 

programming problems. 

-formulation of PLA-SVM

-formulation obtained for SVM objective function. It is evident from Equation (5.2) that 

the number of constraints is equal to the number of data points n 

  as a constraint of soft-margin SVM and  -formulation of constrains for each data 

point in the dataset, i.e., i = 1, 2, 3 . . . n. Using the Equation (5.2) we can rewrite constraint 

as, 

 =  

     =     

    =     

    =                          (5.10)    

b as  and initial 

search domain as, 

such that  

Where,  = Lower bound on b and  = Upper bound on b. So, we can represent parameter 

 

                               (5.11) 

Plugging the linear combinations of   to  ,  and b obtained in Equation (5.5) 

and Equation (5.11) respectively into Equation (5.10), we get, 

 ) + 
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(                            (5.12) 

-formulation of constraints  of Soft-

margin PLA- SVM as, 

     (5.13) 

In addition to constraints in Equation (5.13), we need to add convexity condition on the 

, and  as 

                                                                       (5.14) 

                                                             (5.15) 

                                                                                                 (5.16) 

Plus, we impose the SOS2 condition on Equations (5.14)  (5.16) on each 

than two neighbouring variables may be non-zero in a feasible solution. 

5.3.4 The -formulation of Soft- margin PLA-SVM Optimization Problem 

-formulation for the Soft-margin PLA-

-formulations for the objective function 

and constraints, our aim here is to bring these components together to create a comprehensive 

representation of the PLA-SVM problem. This unified formulation will enable us to leverage 

the power of the MATLAB-GUROBI interface of the GUROBI optimizer [9][19]to obtain 

globally optimal solutions for our model. 

The Soft-margin PLA-SVM optimization problem is expressed as, 

 

 Subject to constrains, 

        

In above formulation, the constraints  i = 1, 2, ..., n, is taken care by keeping the 
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lower bound on  as =0, for all i, in the initial search domain of .   

In the above Soft-margin PLA-SVM 

variables) defined for , b and  j m and i = 1,2 3, ..n, that is 

,  and  respectively.  

To solve this Soft-margin PLA-SVM efficiently and guarantee global optimality, we employ 

the GUROBI solver's GUROBI-MATLAB interface [9][19]. GUROBI is renowned for its 

prowess in tackling complex optimization problems, particularly Mixed Integer 

Programming (MIP) problems, through the Branch and Bound algorithm. This choice of 

solver ensures that the solution obtained is globally optimal, offering the best possible values 

 

The optimal values of proposed SVM parameters , b and is calculated using the 

 

 

                                        (5.16) 

 

here, 

 

 

                . 

                . 

 

and 

            (5.17) 

 

The misclassification cost can be calculated 

variables as 
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                . 

                . 

                                                         (5.18) 

Out of  . . . , the proposed method will find only non-zero  for misclassified points 

in the dataset. The optimal Soft-margin PLA-SVM parameters and  is used 

to classify an unknown sample using following decision function as, 

                              (5.19) 

 

The optimal (minimum) values of the objective function  of the proposed PLA-SVM is 

obtained as 

The value of regularization parameter   is obtained by performing a grid search over a range 

of  values. For example, we have considered  values in a logarithmic scale (e.g., 0.01, 

0.1, 1, 10, 100) to train and evaluate the proposed SVM for each  value using K-fold cross-

validation. We measure the model's performance (e.g., accuracy) on the validation set for 

each fold to choose the  value that results in the best average performance (e.g., highest 

accuracy) across all K folds. 

5.4 The Proposed Soft-margin PLA-SVM Algorithm 

In the core of this chapter, we propose Soft-margin PLA-SVM algorithm. This algorithm is 

a culmination of our comprehensive exploration into Soft-margin SVMs and their 

optimization through piecewise linear approximation. It stands as a testament to the potential 

of combining the robustness of Soft-margin SVMs with the flexibility of PLA techniques. 
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Algorithm 2: The Soft-margin PLA-SVM Algorithm: 

Input: The training data set  , The testing dataset ,  a prespecified 

-04). 

Output: soft-margin  

Initialization: Initialize ,  

. Define ...... , ......  and  for  , 

 and b respectively. 

1: Set  = (0.01, 0.1, 1, 10, 100) and choose K for K cross-validation 

2:  Obtain PLA of Soft  margin SVM  

             For   

             

Subject to:   

and convexity constraints, =1, =1, 

                

3: ,  and   

4: Initiate optimization of the soft-margin PLA-SVM in Step 2 using GUROBI solver.  

5: If the solution is infeasible then, go to initialization step, change the values of   

...... , ......  and  and repeat. 
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6: Obtain the optimal values of design variables  ,  

and  . 

7: Obtain an optimal value of soft-margin PLA-SVM parameters and 

using design variables of Step 6 as, 

     ,      

8: Test  using the decision function,  

9: Evaluate the soft-margin PLA-SVM and Deploy. 

 

The explanation of the Soft-margin PLA-SVM algorithm closely mirrors that of the hard-

margin algorithm, as detailed in Section 4.4.1. However, a notable distinction in the soft-

margin version is the introduction of penalty parameters C. These parameters are critically 

set at varying levels (such as 0.01, 0.1, 1, 10, and 100), playing a pivotal role in the 

algorithm's ability to handle data with more flexibility, particularly in scenarios involving 

overlapping or noisy data classes. 

 

Additionally, in the soft-margin context, there's an enhanced focus on the initial search 

to managing the complexities introduced by data points that may not be perfectly separable, 

a challenge often encountered in real-world datasets. The adjustments in setting up these 

slack variables and their associated domains are what allow the Soft-margin PLA-SVM to 

maintain high classification accuracy while being adaptable to a wider range of data 

scenarios. 
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5.5 The Proposed Soft-margin PLA-SVM Architecture 

 

 

FIGURE 5.2: The Architecture of the Proposed PLA-SVM 
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5.6 Challenges and Limitations of the Proposed PLA-SVM Approach 

In advancing the Piecewise Linear Approximation based Support Vector Machines (PLA-

SVMs), we aimed to enhance the optimization process of primal SVMs for better 

computational efficiency. This was achieved by converting the primal SVM optimization 

problem into a piecewise linear format using SOS2 variables, and solving it with the 

GUROBI solver. While this methodology marks a considerable stride in SVM, it's important 

to recognize the inherent challenges and limitations that accompany this innovation. 

 

1. Complexity in Transformation: The transformation of the primal SVM optimization 

problem into a piecewise linear format is a little complex process and required the thorough 

knowledge of separable programming. It required a careful balance between maintaining the 

integrity of the SVM model and achieving the desired computational efficiency. 

 

2. Dependence on SOS2 Variables: Utilizing SOS2 variables for piecewise linear 

approximation introduced specific complexities. Although they are effective for modelling 

non-linear relationships, they require precise tuning to ensure accuracy in the linear 

optimization framework. 

 

3. Computational Demands for GUROBI Solver: Employing the GUROBI solver, while 

efficient, demanded significant computational resources. Its performance, particularly in 

handling large datasets, depended heavily on the available computational infrastructure. 
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4. Scalability with Extremely Large Datasets: The scalability of PLA-SVM in processing 

massive datasets is a challenge. Although it shows promising results with large datasets, its 

efficiency and effectiveness with extraordinarily large, real-world datasets require additional 

research. 

 

5. Accuracy Dependency on Number of Segments: A pivotal limitation of the PLA-SVM is 

its dependency on the number of piecewise linear segments or breakpoints. While increasing 

these breakpoints can enhance solution accuracy, it concurrently increases solution time. The 

task of optimizing the number of breakpoints to achieve an ideal balance between accuracy 

and computational load is a nuanced and critical aspect of the PLA-SVM design. 

 

In sum, the development of Piecewise Linear Approximation based SVMs addresses 

essential issues in SVM optimization, but the highlighted challenges and limitations 

underscore the need for ongoing refinement and research. Continuous improvement in the 

algorithm's design, exploration of its broader applicability, and advancements in scalability 

will further cement its role as a key tool in machine learning. 

5.7 Conclusion 
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CHAPTER  6 

Experimental Implementation of Hard-margin 

 PLA-SVM  

6.1 Introduction  

In this chapter, we venture into a detailed exploration of applying the Hard-margin Piecewise 

Linear Approximation Support Vector Machine (PLA-SVM) model, as conceptualized in 

Chapter 4, to a practical and challenging domain  the fault diagnosis in gas turbine engines 

(GTEs). GTEs are pivotal components in various high-stakes industries, including aviation, 

petrochemicals, and power generation. The efficient operation and maintenance of these 

engines are crucial, and fault diagnosis plays a central role in ensuring their reliability and 

performance. 

This chapter is dedicated to unraveling the complexities involved in implementing the hard-

margin PLA-SVM for GTE fault classification. We begin by presenting an overview of the 

critical nature of GTEs and the importance of accurate fault diagnosis in these systems. 

Emphasizing the need for advanced machine learning techniques in this field, we set the 

stage for the application of our proposed model. 

We then detail the process of data acquisition, preprocessing, and preparation  crucial steps 

that lay the groundwork for any successful machine learning endeavor. The datasets used in 

this study are subjected to a series of preprocessing techniques, ensuring their quality and 

suitability for the training of the PLA-SVM model. This meticulous preparation is essential, 

as the quality of input data directly impacts the effectiveness of the model. 

The subsequent sections of the chapter focus on the practical aspects of applying the hard-

margin PLA-SVM to these preprocessed datasets. We provide insights into the selection of 

model parameters, the training process, and the evaluation criteria used to measure the 
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model's effectiveness. The unique challenges of applying machine learning algorithms to 

GTE fault diagnosis are addressed, highlighting how the hard-margin PLA-SVM is tailored 

to meet these specific requirements. 

Throughout the chapter, our approach is analytical and methodical, underscoring the 

potential of the hard-margin PLA-SVM in transforming the field of fault diagnosis in GTEs. 

By integrating theoretical knowledge with practical application, this chapter not only 

demonstrates the feasibility of the proposed model but also sets a precedent for future 

research and applications in this critical area. 

All computational tasks for this study were carried out on a robust system, which was 

equipped with a 4.8 GHz Intel CORE i7 processor and 8 GB of RAM.  

6.2 The Fault Diagnosis in Gas Turbine Engines 

Gas turbine engines (GTEs) are among the most expensive and critical components in 

aviation and stationary mechanical applications. A significant challenge in the maintenance 

and operation of GTEs is fault diagnosis, which can be approached as a classification 

problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                 
 
 

 
FIGURE 6.1: Laboratory Mini SR GTE a) Cross section b) Schematic 
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The objective here is to determine whether the components of the engine are in a healthy or 

faulty state. Sing et al. have contributed significantly to this field by developing a physics-

based, laboratory-scale model of the SR-30 gas turbine engine, as detailed in their research 

works [43] and [44]. A comprehensive survey has been carried out on the use of machine 

learning methods for fault diagnosis in gas turbine engines, thoroughly documented in 

references [45], [46], and [47]. This model was later utilized by Sing et al. to develop a data-

driven fault detection and isolation (FDI) technique, specifically targeting failures in the fuel 

delivery system and sensor measurements, as elaborated in their subsequent work [48]. Fig. 

6.1 shows a schematic representation of the lab-scale SR-30 gas turbine engine with station 

index numbers [43]. 

One critical aspect of GTEs is the actuator in the fuel supply system (FSS). Faults in these 

actuators can lead to significant energy losses and, in severe cases, a complete loss of control. 

The study identifies two primary issues with servo actuators in the FSS: i) lock-in-place and 

ii) actuator offset (floating). The current research utilizes the GTE model developed in [42] 

for simulating FSS faults, particularly actuator offset. These simulations, conducted over 

100 seconds, involve the collection of both healthy and faulty datasets, with faulty data 

labeled as '1' and healthy data as '0'. The fault condition is simulated by increasing the output 

of the FSS from 5% to 15%. 

6.2.1 The GTE Actuator Fault Dataset 

The GTE actuator fault dataset used in the present work is described in Table 6.1. The Gas 

Turbine Engine (GTE) fault dataset plays a critical role in diagnosing and classifying faults 

within gas turbine engine actuators, specifically focusing on the "Actuator Offset (Floating) 

fault." This dataset is characterized by two key features: 

Fuel Flow (litres per hour): This feature measures the amount of fuel passing through the 

engine's system per hour, a crucial indicator of the engine's operational state. 

Pulse Width Modulation (PWM): This feature represents the modulation of the pulse width, 

a critical factor in controlling various aspects of the engine's operation, including the fuel 

flow. 

To effectively train and test classification models, the dataset is divided into a training set 

and a testing set, with 70% of the data allocated for training and the remaining 30% reserved 
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for testing. This distribution ensures that the model learns effectively from a substantial 

portion of the data while retaining a significant portion for unbiased evaluation. 

Training Set: Consisting of 12,833 instances, with 9,741 labelled as Healthy Class' and 

3,092 as 'Faulty Class', this set is instrumental in training the model to distinguish between 

normal and faulty actuator conditions. 

Testing Set: This set includes 5,499 instances, split into 4,175 'Healthy Class' and 1,324 

'Faulty Class' instances. It is crucial for assessing how well the model can apply its learning 

to new, unseen data. 

The dataset categorizes fault modes into two classes: 

F1 Healthy (Class 0): Represents the normal, fault-free functioning of the actuator. 

F2 Fault in Actuator (Class 1): Indicates the presence of a fault in the actuator system. 

This dataset provides a comprehensive basis for training and testing models aimed at fault 

diagnosis in GTEs, particularly focusing on actuator faults. The use of this dataset in the 

hard-margin PLA-SVM model is crucial for developing an effective fault detection system 

that can accurately differentiate between healthy and faulty states of GTE actuators. 

The scatter plot of the actuator fault dataset is displayed in Fig. 6.2, showcasing its separable 

nature. This characteristic makes it particularly well-suited for the application of the hard-

margin PLA-SVM, providing an ideal platform to validate the efficacy of the proposed 

approach. 

TABLE 6.1:  Description of the GTE actuator fault dataset 

Datasets Detail 

Description Actuator Offset (Floating) fault 

No. of Features (02) 
1. Fuel flow (liter per hour) 
2. Pulse width modulation 

Training set 
 

9741 Healthy Class 
3092   Faulty Class 

Testing set 
 

4175 Healthy Class 
1324   Faulty Class 

Fault mode 
F1 Healthy (Class 0) 

F2 Fault in Actuator (Class 1) 
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FIGURE 6.2: Scatter Plot of the GTE actuator fault dataset 

6.3 Implementation of Hard-margin PLA-SVM Algorithm 

The implementation of the proposed Hard-margin PLA-SVM algorithm for the classification 

of actuator faults in Gas Turbine Engines (GTEs) was meticulously executed. The 

algorithm's design considered two significant features from the GTE fuel supply system: the 

pulse width modulation input and the fuel flow rate. These features were pivotal as they 

directly impact the performance of the actuator, thus serving as reliable indicators for the 

model. 

The approach was binary in nature, differentiating between 'healthy condition' (Class 0) and 

'faulty condition' (Class 1) of the fuel flow system. To configure the PLA-SVM for this 

classification task, we carefully selected the number of breakpoints or piecewise segments 

for the SVM hyperplane parameters W and bias b. The initial search domains for the vectors 

W and the bias were also meticulously set. The optimization of the model was enhanced by 

employing the GUROBI Optimizer, noted for its precision, with the default tolerance level 

set at 1.00e-04 for optimal performance. 

The training dataset, detailed in Table 6.1, was imported into MATLAB-GUROBI 

environment, setting the stage for the application of the PLA-SVM algorithm. Data 

preprocessing steps like were taken to guarantee the data's suitability for model training, 

ensuring focus on quantitative measurements that have a direct bearing on actuator  

performance.  
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FIGURE 6.3: a) Confusion matrix and b) ROC Curve of PLA-SVM 

 

Upon uploading the training and testing datasets, detailed in Table 6.1, into the MATLAB-

GUROBI environment, we proceeded to execute the proposed Hard-margin PLA-SVM 

algorithm. This algorithm utilizes a branch-and-bound method renowned for its precision in 

complex optimization tasks. Impressively, the PLA-SVM model completed its training 

phase in an expeditious 1.372 seconds, a testament to the model's exceptional efficiency and 

the streamlined nature of our computational approach. 

6.3.1 Results and Discussion 

Our comprehensive evaluation of the hard-margin PLA-SVM model's performance involved 

rigorous testing using a designated dataset, as detailed in Table 6.1. The results, encapsulated 

in a confusion matrix and supported by the ROC curve analysis, attest to the model's 

exceptional diagnostic capabilities. 

As shown in the Fig. 6.3, the confusion matrix obtained for PLA-SVM displayed an 

impressive level of accuracy, with 4,175 instances correctly identified as 'Healthy' (True 

Positives) and 1,324 correctly identified as 'Faulty' (True Negatives). Notably, the model 

 
 

   (a) (b) 
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committed no errors in falsely identifying 'Faulty' cases as 'Healthy' (False Positives) and 

model's predictions, crucial for the reliability of fault diagnosis in GTEs. 

Complementing the confusion matrix, the ROC curve further illustrates the model's 

effectiveness, marked by an AUC of 1. This perfect true positive rate and false positive rate, 

underscores the model's ability to discriminate between the 'Healthy' and 'Faulty' states 

accurately. The chosen Model Operating Point on the ROC curve signifies an optimal 

balance between sensitivity and specificity, essential in minimizing the risk of costly false 

negatives in GTE fault diagnosis. 

To compare the effectiveness of the proposed Hard-margin PLA-SVM, the various machine-

learning models were developed in MATLAB [41]. The proposed PLA-SVM's performance 

matrices, including accuracy, precision, F1 score, ROC-AUC, and training time, are 

compared to those of the existing classifiers in Table 6.2. When juxtaposed with existing 

classifiers, the PLA-SVM model demonstrated perfect scores across all performance 

metrics, including accuracy, precision, F1 score, and ROC-AUC, in both training and testing 

phases. It distinguished itself not only through these metrics but also through its time 

efficiency. The PLA-SVM model was trained in a remarkable 1.372 seconds, showcasing its 

speed advantage for real-time applications and making it particularly suitable for scenarios 

where rapid fault detection is paramount. 

The model's 100% accuracy, often a sign of overfitting, is in this case a reflection of its 

robustness, given the perfectly separable nature of the dataset and its consistent performance 

with unseen data. This level of accuracy, particularly in the fault classification of GTE 

actuators, indicates a model that is both reliable and generalizable. 

The Hard-margin PLA-SVM model's success in this experimental implementation opens up 

avenues for enhanced predictive maintenance strategies, promising significant 

improvements in GTE maintenance and reliability across various sectors. 
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TABLE 6.2: Performance Comparison of various FSS fault classifier 

Model 
Accuracy Precision F1 score ROC-AUC Training 

Time 
Train Test Train Test Train Test Train Test 

Decision 
Tree 

99.93 99.96 99.91 99.95 99.90 99.95 0.9997 0.9998 1.947 

Naïve 
Bayes 

95.83 95.58 97.40 97.45 93.94 93.94 0.9934 0.9939 13.602 

SMO-based 
SVM 

100 100 100 100 1 1 1 1 21.059 

KNN 100 100 100 100 1 1 1 1 24.327 
Ensemble 

Bagged Tree 
99.97 99.93 99.97 99.93 99.96 99.90 0.9998 0.9994 17.704 

Tri-Layered 
Neural 

Network 
100 100 100 100 1 1 1 1 16.564 

XG Boost 100 100 100 100 1 1 1 1 1.624 

Hard-
margin 

PLA-SVM 
100 100 100 100 1 1 1 1 1.372 

 
 

 

FIGURE 6.4: Bar chart of Performance Comparison of PLA-SVM on GTE dataset  
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The following conclusions were reached after looking over the performance comparison 

table and chart shown in Fig. 6.4. The analysis of various machine learning models revealed 

exceptionally high-performance metrics, including accuracy, precision, F1 score, and ROC-

AUC, for both the training and testing phases. Most models, notably SMO-based SVM, 

KNN, Ensemble Bagged Tree, Tri-Layered Neural Network, XG Boost, and PLA-SVM, 

demonstrated perfect scores across all metrics.  

In terms of time efficiency, KNN, and SMO-based SVM were the slowest, while PLA-SVM 

and XG Boost were the fastest. The proposed PLA-SVM significantly outperforms existing 

classifiers in terms of speed, showing a substantial improvement.  

In Fig. 6.4, the bar chart vividly illustrates the exceptional performance of the PLA-SVM on 

the Gas Turbine Engine (GTE) dataset, benchmarking it against a variety of machine 

learning models including SMO-based SVM, KNN, Ensemble Bagged Tree, Tri-Layered 

Neural Network, and XGBoost. Each bar represents a model's effectiveness across several 

key metrics: accuracy, precision, F1 score, and ROC-AUC, for both training and testing 

phases. Notably, PLA-SVM, along with some other models, achieved perfect scores across 

all metrics, demonstrating their impeccable ability to classify GTE faults accurately. What 

sets PLA-SVM apart, as highlighted by the chart, is its unparalleled training speed, 

significantly outperforming the others. This speed, combined with high accuracy, positions 

PLA-SVM as a superior choice for real-time fault detection in gas turbine engines. The bar 

chart not only serves as a comparative analysis of model performances but also underscores 

the PLA-SVM's robustness and efficiency, key for applications where timely fault detection 

is crucial to preventing downtime and ensuring the reliability of GTE operations.  

Discussion: 

When evaluating the PLA-SVM method for the GTE dataset, it becomes evident that it 

attains a training speed that is orders of magnitude faster than current classifiers. In present 

GTE fault classification application, PLA-SVM, along with the majority of other classifiers, 

achieves 100% accuracy. This level of precision is often associated with overfitting; 

however, in scenarios where the datasets are impeccably separable and devoid of noise, such 

accuracy is not only expected but also an indicator of the classifier's robustness. 
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It's important to note that in the domain of faultlessly separable datasets, a classifier like the 

Hard-margin SVM will identify a hyperplane that flawlessly discriminates between classes 

without signaling overfitting. Overfitting is predominantly a concern when a model cannot 

generalize to new data, despite its flawless performance on training data. However, the 

classifiers under consideration have been rigorously tested with unseen data and have 

maintained a 100% accuracy rate, reinforcing the conclusion that these high accuracy levels 

do not stem from overfitting but rather reflect the perfectly separable nature of the datasets. 

PLA-SVM utilizes piecewise linear functions that are inherently less complex and thus can 

attain quicker convergence during the training phase. This simplicity also facilitates the 

model's ability to benefit from parallelization, leveraging multi-core processors or even 

distributed computing environments to further hasten both training and inference processes. 

Additionally, strategic algorithmic optimizations coupled with efficient resource 

management are instrumental in enhancing the speed of training, a characteristic that PLA-

SVM shares with algorithms like XG Boost. These factors combined ensure that the 

proposed PLA-SVM can be trained rapidly, making it an efficient choice for applications 

where time is of the essence. 

Implications for GTE maintenance and Reliability:  

The successful application of PLA-SVM in this study suggests significant implications for 

the maintenance and reliability of gas turbine engines (GTEs). By enabling early and 

accurate detection of actuator faults, this approach can help prevent major failures, reducing 

downtime, and optimizing maintenance schedules. This, in turn, can lead to enhanced 

operational efficiency and cost savings for industries relying on GTEs 

6.4 Conclusion 

The experimental implementation of the Hard-margin PLA-SVM on gas turbine engine fault 

datasets has yielded insightful results. Our rigorous application and testing process 

-SVM, 

along with other classifiers, achieved perfect scores across key performance metrics in both 

training and testing phases, indicating a high level of precision in fault classification. 



Experimental Implementation of Hard-margin PLA-SVM  
 

77 
 

A critical observation from our study is the remarkable speed of the PLA-SVM model in 

training, significantly faster than other existing classifiers. This efficiency is particularly 

advantageous in GTE maintenance, where time is a crucial factor. The ability of PLA-SVM 

to rapidly train and accurately classify faults can lead to quicker response times in fault 

detection, thereby enhancing the reliability and operational efficiency of GTEs. 

Our analysis also addresses the concern of overfitting, often associated with 100% accuracy 

rates. In the case of perfectly separable datasets, such as those used in our study, this high 

accuracy reflects the classifier's robustness rather than overfitting. The PLA-SVM's use of 

piecewise linear functions contributes to its less complex nature and faster convergence 

during training. This simplicity, coupled with the potential for parallelization and 

algorithmic optimizations, further bolsters its suitability for real-time applications. 
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CHAPTER  7 

 

Experimental Implementation of Soft-margin  

PLA-SVM 

 

7.1 Introduction  

In this chapter, we present a comprehensive analysis of the evaluation and benchmarking 

process for the Soft-margin Piecewise Linear Approximation Support Vector Machine 

(PLA-SVM) model, with a focus on its application to non-separable data that permits a 

certain degree of misclassification. The implementation of the Soft-margin PLA-SVM is 

showcased through its application to datasets from disparate fields botanical, medical 

diagnostics, and industrial maintenance. The assessment was carried out in comparison with 

a variety of existing classifiers to determine their relative efficacy and performance. 

Each dataset in this study was meticulously preprocessed to ensure data integrity and quality 

before starting model training. These pre-processing measures were customized to align with 

the unique features of each dataset. Following this stage, we focused on training the Soft-

margin PLA-SVM. These models were expected to excel in scenarios involving non-

separable data, demonstrating a higher tolerance for misclassification and effectively 

managing overlapping classes and noisy datasets.  

To evaluate their effectiveness, we compared these models against traditional classifiers 

using critical performance metrics like accuracy, precision, recall, F1 score, and AUC-ROC. 

This method offered an in-depth evaluation of each model's capabilities and limitations.  The 

chapter is concluded with a synthesis of findings across these varied datasets. All 

computational tasks were carried out on a system equipped with a 4.8 GHz Intel Core i7 

processor and 8 GB of RAM.  
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7.2 Soft-margin PLA-SVM Analysis on Botanical Classification 

The Iris dataset from the UCI machine learning repository is a popular benchmark dataset 

for testing and showing various machine learning algorithms and methodologies [49]. 

Ronald Fisher, a British statistician and biologist, introduced this flower dataset in 1936, 

which includes three species, namely iris setosa, iris versicolor, and iris virginica, as 

illustrated in Fig.7.1. The dataset comprises 150 data samples of iris flowers, with 50 

samples per each of the three species: setosa, versicolor, and virginica. This dataset serves 

as an ideal candidate to demonstrate the efficacy of the Soft-margin PLA-SVM model in 

handling data with fine-grained distinctions 

 

 

 

 

 

                                                        

   FIGURE 7.1: Iris flower subspecies 

7.2.1 Related Work 

The Iris Flower Dataset is widely used as a benchmark dataset for support vector machine 

(SVM) classification. This dataset is mainly used for benchmarking and demonstrating the 

capabilities of SVM and other machine-learning algorithms due to its small and simple size 

[49]. Several machine learning algorithms are commonly utilized for iris flower 

classification using this benchmark iris flower dataset [49].  Some of these are decision trees, 

random forests, support vector machines, and K-nearest neighbors. 

 

T. Gupta et al. conducted a comparative study using the Logistic Regression, Support Vector 

Machine and K-Nearest Neighbours for Iris flower species classification [50]. During their 

study, exploratory data analysis was performed to pre-process the dataset, ensuring data 
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readiness for machine learning models. The models achieved impressive maximum accuracy 

scores of 96.43%, 98.21%, and 94.64% for logistic regression, SVM, and KNN, respectively.  

Qian Yu and fellow researchers employed a ring four-channel RC system approach to solve 

the Iris flower classification based on unidirectional coupled VCSELs [51]. This research 

explored the impact of several parameters on this RC system's recognition performance, such 

as bias currents, external injection strength, frequency detuning, feedback strength, coupling 

strength, and the number of virtual nodes. 

Hemalatha et al. compared various algorithms, including Gaussian Naive Bayes, KNN, 

SVM, and Decision Tree, on the iris dataset [52]. Their study found that the Gaussian Naive 

Bayes model outperformed others classifiers, but it also highlighted the competitive 

performance of SVM in this context. 

Poojitha et al. conducted a study using unsupervised clustering techniques like K-means and 

a neural network clustering tool in MATLAB for effective categorization of the Iris dataset 

into its species groups without requiring explicit supervision [53].  

The ensemble classification technique also performed very well on iris classification. L. 

Pawar and a research group used the base model to classify the iris plant based on its flower 

pattern [54]. Later, an ensemble model is proposed to enhance the classification 

performance.  This might include using techniques like voting, bagging, or boosting to 

combine the base models. 

 

7.2.2 Data Preprocessing  

In the present work, we have used petal length and petal width features, and the classes used 

are versicolor and virginica due to its non-separable correlation. The first phase of the data 

analysis procedure entails preparing the Iris dataset. The Iris datasets used in this experiment 

are shown in Fig. 7.2 (a). To get insights into the distribution and interrelationships of the 

data, scatter plots have been generated. The scatter plot of the dataset is shown in Fig. 7.2 

(b). 

Upon studying the dataset, it is found that the dataset is free from null or missing values, 

negating the demand for any data imputation processes. Correlation analysis uncovers 
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positive connections among the variables within the Iris dataset, offering valuable insights 

for data exploration and the subsequent creation of predictive models. The petal length, with 

its vast range from 1.0 to 6.9 and the largest standard deviation compared to other variables, 

demonstrates considerable variance between the samples. The pronounced standard 

deviation of petal length highlights its utility as a differentiating trait, rendering it a critical 

factor in the classification of distinct Iris species.  

 

 

FIGURE 7.2: Iris flower dataset a) Dataset details b) Scatter Plot   

7.2.3 Results and Discussion 

For the implementation of the soft-margin PLA-SVM on the Iris dataset, the data is separated 

into training and testing subsets following a 70:30 split.  A 10- fold cross-validation strategy 

is applied as the number of training data is very less. The 10-fold cross-validation is 

particularly beneficial for small datasets, such as the Iris classification example, as it helps 

mitigate overfitting by giving each data point the opportunity to be in the validation set, 

thereby offering a more accurate estimate of the model's performance on unseen data. This 

technique also allows for better utilization of data; since small datasets can result in high 

variance in evaluation metrics, cross-validation reduces this variance by systematically using 

different data subsets for training and validation.  

 

Upon uploading the training and testing datasets into the MATLAB-GUROBI environment, 

we proceeded to execute the Soft-margin PLA-SVM algorithm proposed in Section 5.4. The 

optimal model obtained with the PLA-SVM algorithm is tested and validated on testing data 

to evaluate its performance using several metrics. The confusion matrix and ROC curve 

generated on the test dataset are shown in Fig. 7.3. It demonstrates that the PLA-SVM model 

 

 
(a ) (b ) 



Experimental Implementation of Soft-margin PLA-SVM  
 

82 
 

performs well, with a large number of correct predictions and only one instance where 

misclassified. The results are compared with the existing benchmark classifiers obtained 

using the same dataset and the same settings. 

 

 
FIGURE 7.3: a) Confusion matrix b) ROC Curve of PLA-SVM for Testing dataset 

TABLE 7.1: Performance Comparison of PLA-SVM on Iris dataset  

 

   

        (b) (a) 

Classifier 
Name 

Accuracy (%) Precision (%) F1 Score Area Under the 
ROC Curve 

 

Training 
Time 
(Sec) 

Valid-
ation 

Test-
ing 

Valid-
ation 

Test-
ing 

Valid-
ation 

Test- 
ing 

Valid-
ation 

Test-
ing 

SMO-
Based 
SVM 

94.3 93.3 94.2 86.6 0.9428 0.9285 0.9878 1 3.8085 

Linear 
Discrimi-

nant 

94.3 93.3 94.2 86.6 0.9428 0.9285 0.9910 1 1.7875 

Ensemble 
Bagged 
Trees 

91.4 93.3 88.5 88.2 0.9117 0.9375 0.9718 0.9956 12.463 

Soft-
Margin 
PLA-
SVM 

92.9 96.7 94.2 93.3 0.9295 0..9655 0.9890 0.9933 1.138 

K Nearest 
Neighbor 

92.9 93.3 88.5 100 0.9253 0.9375 0.9286 0.9333 2.8939 

XGBoost 94.3 96.7 94.2 93.3 0.9428 0.9655 0.9918 1 2.2256 

Logistic 
Regression 

(Kernel) 

92.9 93.3 91.6 86.6 0.9295 0.9285 0.9845 1 11.102 
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FIGURE 7.4 Bar chart of Performance Comparison of PLA-SVM on Iris dataset  

Table 7.1 and its corresponding bar chart shown in Fig. 7.4 present a side-by-side evaluation 

of the PLA-SVM model. The analysis presented in Figure 7.4, supported by data from Table 

7.1, offers a comprehensive evaluation of the Soft-margin PLA-SVM model's capabilities in 

comparison to other established classifiers. This visual and tabular comparison delves into 

performance metrics such as accuracy, precision, F1 score, AUC score, and training time, 

presenting a holistic view of the model's efficiency and effectiveness. 

The bar chart vividly illustrates the Soft-margin PLA-SVM's superior testing accuracy, 

achieving a remarkable 96.7%, which not only surpasses the benchmarks set by SMO-Based 

SVM, Linear Discriminant, Ensemble Bagged Trees, K Nearest Neighbor, and Logistic 

Regression (Kernel) but also equals the performance of XGBoost. This graphical depiction 

emphasizes the model's robustness and its precision in classifying the Iris dataset, 

highlighting its standout ability among its peers. 

Additionally, the efficiency of Soft-margin PLA-SVM is underscored by its training time of 

merely 1.138 seconds, a significant improvement over other model. This advantage is 

graphically represented, showcasing the model's speed without compromising accuracy, 

making it an optimal choice for applications valuing swift and precise decision-making. 

The bar chart further enriches our understanding by detailing the Soft-margin PLA-SVM's 

performance across other critical metrics, including precision, F1 score, and area under the 
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ROC curve. It visually conveys the model's adeptness in not just achieving high 

classification accuracy but also in striking a balance between sensitivity and specificity.  

7.3 Soft-margin PLA-SVM and Medical Diagnostics 

In this section, we turn our attention to the application of the Soft-margin PLA-SVM model 

in the crucial field of medical diagnostics, utilizing it to analyze and predict diabetes using 

the PIMA Indian Diabetes dataset. This dataset, which represents a complex and socially 

significant health challenge, provides an excellent opportunity to evaluate the effectiveness 

of Soft-margin PLA-SVM in a medical context. 

7.3.1 Related Work 

 In our research, the Pima Indian Diabetes dataset was chosen due to its comprehensive and 

relevant data, which is crucial for the accurate classification and prediction of type 2 

diabetes. 

This dataset is widely recognized for its detailed representation of various factors pertinent 

to diabetes, making it an ideal resource for developing and testing machine learning models. 

By employing this dataset, we aimed to leverage its rich data to explore the effectiveness of 

our proposed PLA-SVM methodologies, particularly in the context of diabetes diagnosis and 

management. The Pima dataset's extensive use in previous studies also provides a valuable 

benchmark, allowing us to compare and validate our findings effectively.  

Numerous studies have been conducted to diagnose diseases using various classification 

algorithms, like SVM, Naive Bayes, and Decision Tree. Hama Saeed's research employed 

machine learning algorithms such as gradient boosting, decision trees, additional trees, and 

the AdaBoost classifier for classifying type 2 diabetes [55]. The extra trees classifier (ETC) 

with an up-sampling method emerged as the most effective, achieving high recognition rates 

in different datasets. Rastogi et al. implemented various algorithms like Random Forest, 

SVM, Linear Regression, and Naive Bayes for diabetes prediction [56]. Logistic regression 

achieved the highest accuracy of 82.46%, while SVM showed lower accuracy and sensitivity 

compared to other models.  
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Jana and Bharanidharan proposed a method incorporating multiple ensemble learning 

strategies and classification algorithms, including KNN, Random Forest, Decision Tree, and 

voting classifiers [57]. The voting classifier, evaluated using the Matthews correlation 

coefficient (MCC), outperformed others with 55.2% better accuracy. Reshmi and  Biswas 

developed the DESMLA model, a diabetes expert system using Decision Tree and Random 

Forest classifiers, along with data preprocessing and various oversampling methods [58]. 

DESMLA with K-means SMOTE and Gaussian SMOTE showed the best performance in 

predicting diabetes. Sarwar and Kama applied six machine learning algorithms to the PIMA 

Indian dataset for diabetes forecasting in healthcare predictive analytics, with SVM and 

KNN achieving 77% accuracy [59]. Vijayan and Anjali proposed a decision support system 

for diagnosing diabetes using the AdaBoost algorithm with Decision Stump, achieving 

higher accuracy than SVM, Naive Bayes, and Decision Tree [60]. Salliah et al. examined a 

clinical dataset and found that the RF algorithm had the highest accuracy among several 

algorithms tested [61]. 

Pethunachiyar researched diabetes classification using SVM with different kernel functions, 

finding the linear kernel to be the most accurate [62]. Kayaer and Kamer researched the 

general regression neural network (GRNN) using the Pima Indian Diabetes dataset, finding 

its performance comparable to more complex neural network designs [63]. Prasanna and 

Usha employed the multilayer perceptron (MLP) algorithm for diabetes diagnosis and 

classification, demonstrating its high accuracy and reliability [64]. Sidong et al.  explored 

diabetes diagnosis using DNN and SVM, achieving an accuracy rate of 77.86% with 10-fold 

cross-validation [65]. Lakshmi et al. studied diabetic disease detection using a graph-b-

coloring-based clustering algorithm, achieving 93.767% accuracy [66]. 

7.3.2 Dataset Details: PIMA Indian Diabetes 

The National Institute of Diabetes and Digestive and Kidney Diseases provided 

access to the original dataset for Pima Indian diabetes [67]. Table 7.2 provides a 

comprehensive overview of the dataset, which concentrates on female patients. It includes a 

range of medical predictor variables such as Body Mass Index (BMI), insulin levels, age, 

and the number of pregnancies.  
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TABLE 7.2: Description of the PIMA dataset [67] 

Feature Description Data Type Range 

Preg Number of times pregnant Numeric [0, 17] 

Gluc 
Plasma glucose concentration at 2 Hours 
in an oral glucose tolerance test (GTT) 

Numeric [0, 199] 

BP Diastolic Blood Pressure (mm Hg) Numeric [0, 122] 

Skin Triceps skin fold thickness (mm) Numeric [0, 99] 

Insulin 2-Hour Serum insulin (µU/ml) Numeric [0, 846] 

BMI 
Body mass index [weight in kg/ (Height 
in m) ^2] 

Numeric [0, 67.1] 

DPF Diabetes pedigree function Numeric [0.078, 2.42] 

Age Age (years) Numeric [21, 81] 

Class 
Binary value indicating non-
diabetic/diabetic 

Factor [0,1] 

 

Additionally, the table presents the 'Class' variable that is used to diagnose diabetes. It 

consists of 768 samples, of which 500 are non-diabetic and 268 diabetics, reflecting an 

unbalanced distribution. 

7.3.3 Data Preprocessing for Enhanced Model Performance 

Effective data preprocessing is a critical step in the machine learning pipeline, particularly 

in medical diagnostics where data accuracy and quality are paramount. In this subsection, 

we detail the specific preprocessing methods applied to the PIMA Indian Diabetes dataset, 

preparing it for analysis with the Soft-margin PLA-SVM. These steps are crucial for 

ensuring the integri

predictions. 

Upon examination of the PIMA dataset, we implemented a series of preprocessing steps. 

 

Data Cleaning: In the Pima dataset, several attributes, including glucose, BMI, insulin, skin 

thickness, and blood pressure, have missing or invalid data. To address this, imputation with 

outlier corrections was applied. Specifically, missing values for these attributes are replaced 

by median values with reference to the outcome value. 

Feature selection: To identify the most informative and influential features that contribute 

to the accuracy of the model, random forest feature importance score is used. By leveraging 
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Random Forest feature importance scores, we have identified glucose, BMI, age, 

pregnancies, diabetes pedigree function and insulin as the most influential features. 

Handling outliers: IQR identifies outliers, and we replace them with robust median values 

in the Pima dataset, reducing the impact of extreme values on analysis. 
Class balancing: Pima dataset is an imbalanced dataset containing instances with an unequal 

proportion of class labels, which may lead to overfitting problems. The distribution of 

Diabetic and Non-Diabetic Cases in the Pima dataset is shown in Fig. 7.5 (a). An imbalanced 

dataset may have a negative impact on the performance of models. To mitigate these issues, 

the SMOTE oversampling technique is used to lessen the class imbalance. 

 

The Synthetic Minority Over-Sampling Technique (SMOTE) plays a crucial role in 

addressing dataset imbalances by generating synthetic samples from the minority class. This 

method involves identifying the k-nearest neighbors for each minority class sample, then 

creating synthetic instances by interpolating between a given sample and its neighbors. 

Essentially, SMOTE works by randomly choosing one of the k-nearest neighbors and using 

it to create a similar, but slightly modified, new instance. This technique not only enriches 

the dataset with more diverse minority class samples but also helps in mitigating the bias 

towards the majority class, thereby enhancing the generalizability of machine learning 

models.  

 

By employing SMOTE, our study ensures a balanced representation of classes, crucial for 

the effective training and evaluation of the Piecewise Linear Approximation SVM (PLA-

SVM), thus addressing one of the significant challenges in applying machine learning to 

imbalanced datasets. 

Data splitting: 70 percent of the data was allocated for training purposes, while the 

remaining 30 percent was reserved for testing. 

 

Figure 7.5 (b) illustrates the transformative effect of SMOTE oversampling on the 

distribution of Diabetic and Non-diabetic data. Prior to applying SMOTE, the dataset 

exhibited a pronounced imbalance, with Non-diabetic instances significantly outnumbering 

Diabetic cases, potentially skewing predictive modeling and analysis. The application of 

SMOTE effectively mitigates this imbalance by generating synthetic instances of the 

minority (Diabetic) class, based on the feature space similarities of existing minority 
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instances. This process not only augments the quantity of Diabetic samples but also 

diversifies the representation within this class, leading to a more balanced dataset. As a 

result, the post-SMOTE dataset presents a nearly equal distribution of Diabetic and Non-

diabetic instances, thereby enhancing the robustness of subsequent analyses and ensuring 

that the predictive models developed, such as the PLA-SVM, can learn from a dataset that 

more accurately reflects the complexity of the underlying problem.  

 

 

 

 

 

 

 

 

 

 

FIGURE 7.5: a) Original PIMA dataset distribution b) Distribution after SMOTE oversampling. 

7.3.4 Results and Discussion 

In this experimental study, we examined the performance of the Soft-margin PLA-SVM 

model against numerous common machines learning classifiers, including Decision Tree, 

Naive Bayes, Support Vector Machines, Linear Discriminant, etc. All these classifiers were 

applied to the PIMA Indian dataset with 70% oversampled training data. After training, each 

of these classifiers was used to predict the existence of diabetes in patients for 30% of the 

testing dataset.  

To assess the robustness of the PLA-SVM model, a 10-fold cross-validation technique was 

employed on the training dataset. The model derived from the Soft-margin PLA-SVM 

algorithm is rigorously tested and validated using the test dataset. Performance outcomes are 

benchmarked against results from established classifiers that were tested under identical 

conditions with the same dataset.  The confusion matrix and ROC curve generated on the 

test dataset are shown in Fig. 7.6. Table 7.3 and Fig. 7.7 collectively offer a nuanced 

 

(a) (b) 
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comparison of the Soft-margin PLA-SVM model's efficacy against a spectrum of classifiers 

on the PIMA Indian dataset. 

 

           FIGURE 7.6: a) Confusion matrix b) ROC Curve of PLA-SVM for testing dataset 

TABLE 7.3: Performance Comparison of PLA-SVM on PIMA dataset 

 

 

    

(a) (b) 

Classifier 
Name 

Accuracy (%) Precision (%) F1 Score 
Area Under the 

ROC Curve 
 

Traini
ng 

Time 
(Sec) 

Valid-
ation 

Test-
ing 

Valid-
ation 

Test 
-ing 

Valid- 
ation 

Test- 
ing 

Valid- 
ation 

Test- 
ing 

Naïve 
Bayes 

70.4 72.0 78.8 78.0 0.7272 0.7358 0.8146 0.8166 2.83 

SMO-
based 
SVM 

76.1 77.3 78.0 75.3 0.7657 0.7687 0.8468 0.8468 2.19 

Decision 
Tree 

76.14 78.0 76.2 79.3 0.7617 0.7828 0.7865 0.8643 12.56 

Tri layered 
NN 

Decision 
76.6 77.3 76.0 72.6 0.7643 0.7622 0.8033 0.8442 33.68 

Soft-
Margin 
PLA-
SVM 

76.6 78.7 74.57 75.33 0.7609 0.7793 0.8511 0.8831 1.37 

Linear 
Discrimi-

nant 
74.7 77 79.1 76.8 0.7578 0.7707 0.8478 0.8516 2.30 

XGBoost 76.1 78.0 76.28 79.33 0.7617 0.7828 0.7865 0.8643 3.69 
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FIGURE 7.7 Bar Chart of Performance Comparison of Soft-Margin PLA-SVM on PIMA dataset 

 

The bar chart, with classifiers delineated along the x-axis and performance metrics and time 

plotted on the y-axis, visually. It is evident from the chart that the Soft-margin PLA-SVM 

notches an impressive testing accuracy of 78.7%, outpacing the majority of its counterparts 

and closely mirroring the top-performing models. This standout accuracy, coupled with a 

testing precision of 75.33%, underscores the model's precision in diagnosing the PIMA 

Diabetes dataset with high reliability. 

Moreover, the model's balanced F1 score of 0.7793 and its prowess in the area under the 

ROC curve, scoring 0.8831, are vividly represented, showcasing its adeptness at 

differentiating between classes while efficiently managing the trade-off between sensitivity 

and specificity. The chart further highlights the Soft-margin PLA-SVM's unparalleled 

training efficiency, clocking a mere 1.37 seconds, which is significantly swifter than many 

of its competitors. This efficiency is crucial for large-scale applications where time and 

computational resources are paramount. 

In essence, the bar chart not only visually affirms the Soft-margin PLA-SVM's superior 

performance metrics but also its remarkable training efficiency, making it an indispensable 

tool for medical diagnostics. This comprehensive performance, vividly captured in the 
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graphical analysis, reinforces the model's potential as a robust solution for healthcare 

applications, particularly in diabetes diagnosis where precision and speed are of the essence. 

7.4 Cancer Detection with Soft-margin PLA-SVM 

The application of machine learning in oncology, particularly in the early detection of 

cancer, is a transformative advancement in medical science. Breast cancer remains a major 

health concern globally, being the second leading cause of mortality among women [68]. 

The journey towards improved diagnostic techniques and treatment methods has been 

significantly aided by a key asset - the original Wisconsin Breast Cancer (WBC) dataset 

[69]. Originating from the University of Wisconsin Hospitals, this dataset has been a pivotal 

element in advancing breast cancer research, playing a crucial role in enhancing our 

comprehension of this serious illness. Early detection of breast cancer is critical; it increases 

the likelihood of effective treatment by 30%, whereas a delayed diagnosis complicates 

treatment options [70] [71]. This emphasizes the importance of timely and accurate 

diagnostic approaches in the battle against breast cancer. The adoption of machine learning 

techniques within the domain of medical science has witnessed a rapid ascent, primarily 

attributed to their remarkable efficacy in outcome prediction. 

In this section, we explore the deployment of the Soft-margin PLA-SVM model in the 

domain of cancer detection, focusing specifically on original WBC dataset and benchmark 

against existing classifiers. This application underscores the potential of machine learning 

models to contribute significantly to medical diagnostics and patient care. 

7.4.1 Related Work 

Numerous studies have significantly enhanced the application of machine learning 

algorithms in predicting and diagnosing breast cancer [72-85]. The WBC dataset's extensive 

use in prior studies offered a robust framework for comparison and validation, ensuring that 

our methodologies and findings are both innovative and grounded in a well-established 

scientific context. This dataset's rich history in breast cancer research makes it an ideal 

choice for exploring new diagnostic approaches and contributing meaningful insights to the 

field of oncology. Amrane et al. conducted a study on breast cancer classification using the 

WBC dataset and performed binary classification using two ML classifiers, NB and kNN 
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[72]. Bayrak et al. compared the performance of two ML methods, ANN and SVM, for breast 

cancer diagnosis using the WBC dataset [73]. Showrov et al. used SVM, ANN, and NB for 

breast cancer risk prediction and diagnosis on the WBC dataset [74]. Chaurasia et al. used 

Naïve Bayes, RBF network, and J48 for the prediction of benign and malignant breast cancer 

in the Wisconsin breast cancer database (WBCD) to improve the accuracy of the BC 

prediction model [75].  

Salama et al. conducted a breast cancer diagnosis study using the WEKA data mining tool, 

including the WBC dataset [76]. They performed binary classification using five ML 

classifiers, namely NB, MLP, J48, SMO, and IBK. Shah and Jivani employed three distinct 

classification strategies to predict breast cancer, prioritizing high accuracy and low 

computation time [77]. However, their approach suffered from a limitation of relatively 

lower accuracy.Azar et al. introduced a novel breast cancer detection approach that 

employed three distinct classification algorithms: radial basis function (RBF), probabilistic 

neural networks (PNN), and multi-layer perceptron (MLP) [78]. In another study, Sivakami 

and Saraswathi worked on breast cancer prediction using a DT SVM hybrid model of 

decision tree and support vector machines to improve the accuracy of breast cancer 

prediction [79]. Bektas and Babur conducted research on breast cancer diagnosis using two 

datasets from Kent Ridge Microarray and employed machine learning algorithms such as 

support vector machine, k-

findings revealed that the random forest algorithm outperformed the applied feature selection 

method in terms of performance.  

Emina and Abdulhamit presented a system for breast cancer identification using two 

different Wisconsin breast cancer datasets [81]. They applied GA feature selection and 

Random Forest (RF) as part of their methodology. Attya demonstrated an innovative 

technique for breast cancer prediction [82]. Their approach involved classifying attributes 

from a breast cancer dataset using a hybrid neuro-genetic framework that combined genetic 

algorithms and training feedforward and backpropagation. Ivancakova et al. compared 

various ML methods on the Wisconsin dataset, employing six ML classifiers for 

experimentation [83]. Additionally, they evaluated classifier performance on both the 

original and under-sampled versions of the breast cancer dataset. Nawaz et al. conducted 

multiclass classification, categorizing tumors into three subclasses using the BreakHis 

dataset [84]. They applied CNN, resulting in a notable accuracy of 95.4% for histopathology 
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image analysis. Boeri et al. used an artificial neural network (ANN) and SVM for the 

prognosis of b

undergoing surgery [85]. McKinney et al. introduced an AI system surpassing human experts 

in breast cancer detection using mammograms [86]. Akbulut et al. compared breast cancer 

classification with GBM, XGBoost, and LightGBM models, where LightGBM achieved a 

notable accuracy [87]. 

7.4.2 Breast Cancer Dataset Overview 

The Wisconsin Breast Cancer dataset was chosen for this study due to its widespread use in 

breast cancer research and its relevance in clinical diagnostics. This dataset comprises 

clinical and morphological features extracted from breast cell biopsies, encompassing 

attributes such as such as cell size and shape uniformity, clump thickness, adhesion, 

epithelial cell size, nuclei characteristics, and mitotic activity. Originally sourced from the 

University of Wisconsin Hospitals, the dataset contains a total of 699 instances, each 

associated with a binary class label: malignant (M) or benign (B), representing cancerous 

and non-cancerous tumors, respectively. The primary objective when working with the WBC 

dataset is to develop a classification model that can accurately predict whether a tumor is 

malignant (cancerous) or benign (non-cancerous) based on the provided features. Table 7.4 

shows details of the features, classes, class distribution, and number of missing values of the 

breast cancer dataset. 

TABLE 7.4: Description of WBC dataset [69]  

Sr.  No. Features/Predictors Details 

1 Sample code number Id number 

2 Clump Thickness 1-10 

3 Uniformity of Cell Size 1-10 

4 Uniformity of Cell Shape 1-10 

5 Marginal Adhesion 1-10 

6 Single Epithelial Cell Size 1-10 

7 Bare Nuclei 1-10 

8 Bland Chromatin 1-10 

9 Normal Nucleoli 1-10 

10 Mitoses 1-10 

11 Class 2 for Benign & 4 for Malignant 

Class Distribution Benign: 458(65.5%), Malignant: 241(34.5%) 
Total Number of Observations 699 

Number of Missing values 16 
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7.4.3 Preparatory Data Processing Steps 

Given the critical nature of cancer detection, the preprocessing of the Breast Cancer dataset 

is performed with utmost care and precision. This subsection will outline the specific data 

processing steps undertaken to optimize the dataset for the application of the Soft-margin 

PLA-SVM.  

Following are the steps taken in preprocessing of WBC dataset:  

Treatment of Missing Values: One of the primary issues in constructing the dataset was 

handling missing observations. Specifically, for the 'Bare Nuclei' feature, which had missing 

values, a choice was made to impute these gaps. The chosen method of imputation was to 

replace missing values with the median value of the feature, which, in this case, was 1. This 

strategy is generally favoured over utilizing mean values, as it is less sensitive to outliers 

and can provide a more robust assessment of central tendency. 

Standardization of Feature Scales: To provide consistent and fair evaluation across all 

characteristics, the scales were standardized. This phase often entails rescaling the features 

so that they have a mean of 0 and a standard deviation of 1, however, the specific procedure 

can vary based on the properties of the data. 

Partitioning of Data into Training and Testing Sets: The dataset was split into two parts: 

70% of the data was allotted for training the models, and the remaining 30% was set aside 

for testing. 

7.4.4 Results and Discussion 

To optimize the performance of the PLA-SVM model, an extensive hyper parameter tuning 

process was undertaken. This involved a systematic search over a range of parameters, such 

as the number of breakpoints for piecewise linear approximation and the regularization 

parameter ( ). The hyperparameter  is set as (0.1, 1, 10) and chosen =10 for  cross-

validation. The goal was to identify the optimal settings that maximize the model's predictive 

accuracy. The model derived from the Soft-margin PLA-SVM algorithm is rigorously tested 

and validated using the test dataset. Performance outcomes are benchmarked against results 

from established classifiers that were tested under identical conditions with the same dataset. 
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Fig. 7.8 shows the confusion matrix and ROC-AUC curve obtained with the proposed soft-

margin PLA-SVM.  

The analysis of PLA-SVM's comparative performance, as visualized in Table 7.5 and further 

elaborated through the bar chart in Fig. 7.9, underscores the model's superior efficacy against 

various classifiers on the WBC dataset. This bar chart, delineating each classifier by distinct 

colored bars corresponding to different evaluation metrics, facilitates a direct visual 

comparison across metrics like accuracy, precision, F1 score, area under the ROC curve, and 

training time. 

The Soft-margin PLA-SVM distinguishes itself most notably in testing accuracy (98.6%) 

and F1 score (0.9889), marking it as the most effective model. Its efficiency is further 

highlighted by the shortest training time of merely 0.74 seconds, as depicted in the bar chart, 

underscoring its operational superiority. While XGBoost demonstrates comparable testing 

accuracy (98.3%) and efficiency, Linear SVM and Linear Discriminant stand out for their 

precision and AUC in testing, showcasing their niche value in certain scenarios. 

 

 

FIGURE 7.8: a) Confusion Matrix and b) ROC Curve of PLA-SVM 

 

 

 

  

 (a) (b) 
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TABLE 7.5: Performance Comparison of PLA-SVM on WBC dataset  

 

     

                    FIGURE 7.9: Bar chart of Performance Comparison of PLA-SVM on WBC dataset  

      

The bar chart vividly captures the Soft-margin PLA-SVM's balanced performance across a 

spectrum of metrics, setting it apart from models like the Tri-layered Neural Network and 

Ensemble Boosted Trees, which, despite their classification success, show lagging training 

Classifier 
Name 

Accuracy (%) Precision (%) F1 Score 
Area Under the 

ROC Curve 
 

Training 
Time 
(Sec) Valid- 

Ation 
Test- 
ing 

Valid- 
ation 

Test- 
ing 

Valid- 
ation 

Test- 
ing 

Valid- 
ation 

Test-ing 

Tri layered 
NN 

Decision 
94.5 97.6 95.95 98.54 0.9580 0.9818 0.9536 0.9719 5.76 

SMO-
based 
SVM 

96.1 98.1 96.57 98.54 0.9703 0.9854 0.9926 0.9990 2.37 

K Nearest 
Neighbor 

95.1 94.3 97.2 97.08 0.9630 0.9568 0.9416 0.9298 1.56 

Soft-
margin 
PLA-
SVM 

96.9 98.6 95.95 97.81 0.9762 0.9889 0.9781 0.9939 0.74 

Ensemble 
Boosted 

Trees 
93.1 96.7 94.08 97.81 0.9467 0.9745 0.9627 0.9902 8.07 

Linear 
Discrimi-

nant 
95.5 97.6 97.82 98.54 0.9662 0.9818 0.9917 0.9991 1.19 

XGBoost 97.21 98.3 96.26 97.51 0.9793 0.9859 0.9812 0.9909 0.83 



Experimental Implementation of Soft-margin PLA-SVM  
 

97 
 

efficiency. This visual representation not only affirms the textual analysis but also enhances 

the understanding of PLA-SVM's outstanding combination of accuracy, efficiency, and 

efficacy validating its adaptability and superiority for a broad array of applications. 

 

In essence, through the integration of bar chart analysis, the PLA-SVM model is revealed to 

excel in testing accuracy and efficiency, presenting itself as a balanced and superior choice 

across diverse applications. Its unique blend of high performance in specific metrics, 

alongside the graphical insights, positions the proposed Soft-margin PLA-SVM as a model 

of unparalleled balance in accuracy, speed, and overall effectiveness. 

7.5 Soft-margin PLA-SVM in Industrial Maintenance 

This section presents the application of the Soft-margin PLA-SVM model in industrial 

maintenance, particularly in predictive maintenance. It highlights how this model aids in 

anticipating and preventing equipment failures, showcasing the effective use of advanced 

data analysis in refining maintenance strategies across various industries. 

The integration of machine learning in industrial maintenance, especially for predictive 

analysis, marks a significant advancement in operational efficiency and safety. Predictive 

maintenance (PdM) has emerged as a key aspect in the industrial sector, transitioning from 

traditional preventive methods to utilizing advanced analytics, sensor data, and machine 

learning algorithms for timely maintenance actions. This shift enhances maintenance 

efficiency by reducing unnecessary upkeep and downtime, and aids in proactive decision-

making for equipment maintenance, thus optimizing costs, efficiency, and equipment 

availability. Recent studies have focused on improving this model-based approach in 

predictive maintenance [89]  [93].  

7.5.1 Related Work 

In the context of Industry 4.0, the role of fault diagnosis and predictive maintenance is 

critical to enhancing industrial efficiency.  The application of machine learning algorithms 

in this domain is pivotal, offering a proactive approach to equipment management. The use 

of advanced techniques in predictive maintenance is in line with the broader objectives of 

Industry 4.0, representing a notable shift away from traditional maintenance methods. These 
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methods emphasize data-driven decision-making, which enhances machinery reliability, 

minimizes downtime, optimizes the machinery lifecycle, and ensures consistent operational 

performance.  

Numerous applications and studies have adopted machine learning techniques for 

predictive maintenance. A notable example is the work by Canizo et al., which details 

the development of a predictive maintenance application for a Big Data platform [94]. 

Their primary goal was to forecast failures in wind turbines using a cloud-based data 

solution. The critical roles and responsibilities of nuclear infrastructure for a country's 

benefit, businesses, and society is well recognized. In light of this, Gohel et al.  aimed 

to create and implement a machine learning model specifically for predictive 

maintenance in nuclear facilities [95]. They utilized algorithms like Support Vector 

Machine (SVM) and Logistic Regression for this purpose. The model gathers data from 

sensors measuring temperature, pressure, vibration, and acceleration, which are 

strategically placed across various systems and subsystems to oversee the machinery 

and operations within the nuclear infrastructure. 

Ayvaz & Alpay contributed another innovative research in machine learning for 

predictive maintenance [96]. Their project focused on creating a predictive maintenance 

system for manufacturing production lines. This system was designed to identify early 

signs of potential failures using machine learning methods. It utilized real-time data 

from IoT sensors, and the findings indicated that the system effectively detected patterns 

that could lead to failures, thus aiding in the prevention of unforeseen interruptions in 

the production processes. 

In our research, we've chosen the AI4I 2020 Predictive Maintenance dataset from the 

UCI Machine Learning Repository, a widely recognized source for reliable data [97]. 

This particular dataset is instrumental in exploring the dynamics of Predictive 

Maintenance (PDM) within the field of artificial intelligence. The dataset's robustness 

and relevance have been demonstrated in several notable studies. For instance, 

Pruckovskaja et al. conducted a thorough evaluation of various Federated Learning (FL) 

aggregation methods using this dataset [98]. Their study not only assessed the 

performance of these methods but also drew insightful comparisons with central and 

local training approaches. 
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Similarly, Assagaf et al. undertook a significant project by designing a Support Vector 

Machine (SVM) model specifically tailored to the AI4I 2020 Predictive Maintenance 

dataset [99]. Their model achieved an impressive 80% accuracy in detecting machine 

failures, showcasing the potential of machine learning in practical applications. These 

providing a solid foundation for our investigation into advanced predictive maintenance 

techniques 

7.5.2 Predictive Maintenance Dataset Description 

The AI4I 2020 Predictive Maintenance dataset (AI4I2020) is a synthetic dataset designed to 

mimic real-world industrial data for predictive maintenance. It includes six features: two 

categorical (product type and failure type) and four numerical (process temperature, air 

temperature, rotational speed, torque). The analysis focuses on binary classification of 

failure presence. With 10,000 data points, only 339 show failures, indicating a significant 

class imbalance with just 3.39% failure instances [97][100]. 

7.5.3 Data Preprocessing for Predictive Analysis 

Before applying the Soft-margin PLA-SVM model to this dataset, a series of preprocessing 

steps are undertaken to ensure data quality and relevancy. These steps, crucial for the success 

of predictive analysis, include data cleaning, normalization, and feature selection. This 

subsection examined the methodologies employed in preparing the dataset, setting the 

foundation for accurate and reliable predictive maintenance analysis using the Soft-margin 

PLA-SVM. 

Exploratory data analysis was conducted for a complete assessment of the dataset. A 

thorough examination confirmed the absence of missing values in the dataset, indicating no 

need for imputation methods. The decision was made not to remove outliers, considering the 

dataset's limited size and the potential impact on analysis. The dataset was first recognized 

as severely unbalanced, demanding specific measures for balance restoration. 
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TABLE 7.6: Description of Predictive Maintenance AI4I2020 dataset [97] 

 

Data Cleaning: The original database undergoes a process of eliminating variables 

associated with failure modes. Subsequently, the exclusion of UDI variables, Product_ID 

and type is carried out, considering them as non-contributors to the prediction. Following 

these eliminations, the database is left with only 5 process variables and the target variable 

as shown in Table 7.6, which will be employed in the creation of the model. 

Implementing Oversampling to Address Imbalance: Fig. 7.10 (a) shows that the dataset is 

highly imbalanced. The SMOTE was applied for oversampling, specifically to boost the 

representation of the underrepresented class. In class 1, the number of samples dramatically 

increased from 339 to 9467 as shown in Fig. 7.10 (b), adding 9218 examples to the original 

dataset. 

Resulting Dataset Composition: Post-oversampling, the dataset increased to cover a total of 

19128 observations as shown in Fig. 7.10 (b), effectively balancing it for later analysis. 
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      FIGURE 7.10:  PdM AI4I2020 dataset a) Before SMOTE b) After SMOTE  

7.5.4 Results and Discussion  

For the implementation of the Soft-margin PLA-SVM on the AI4I PdM dataset, the data is 

separated into training and testing subsets following a 70:30 split with a 10- fold cross-

validation for training dataset. Upon uploading the training and testing datasets into the 

MATLAB-GUROBI environment, we proceeded to execute the soft-margin PLA-SVM 

algorithm proposed in Section 5.4. The optimal model obtained with the PLA-SVM 

algorithm is tested and validated on testing data to evaluate its performance using several 

metrics.  

 

The confusion matrix and ROC curve shown in Fig. 7.11 together offer a comprehensive 

picture of the PLA-SVM model's performance: The confusion matrix reveals the model's 

high accuracy in identifying True Negatives (2801 instances) and True Positives (2763 

instances).It also indicates a small number of False Positives (97 instances) and False 

Negatives (77 instances), showcasing room for improvement in reducing these errors. The 

ROC curve indicates a strong discriminatory ability of the PLA-SVM model, with an AUC 

score of 0.9943, suggesting it effectively differentiates between the positive and negative 

classes. The model's operating points, highlighted on the curve, denote the balance between 

sensitivity and specificity chosen for the model.  

 
(a) (b) 
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Table 7.7 and the accompanying bar chart in Fig. 7.12 offer a detailed comparison. In our 

comprehensive evaluation of various models, Soft-Margin PLA-SVM emerges as a clear 

frontrunner, showcasing remarkable performance in classification tasks. 

 

 
                       

FIGURE 7.11: a) Confusion Matrix and b) ROC Curve of PLA-SVM on testing dataset 

 

With a speedy training time of just 2.68 seconds, PLA-SVM achieves an impressive testing 

accuracy of 97.0%. What truly distinguishes PLA-SVM is its exceptional precision, which 

reaches 96.65% in testing, signifying its ability to precisely identify positive cases. 

Furthermore, PLA-SVM excels in terms of the F1 Score, indicating a robust equilibrium 

between precision and recall. 

 

 

 

 

 

   

 (a) (b) 
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TABLE 7.7: Performance Comparison of PLA-SVM on PdM AI4I2020 dataset  

 

 
 

 

FIGURE 7.12: Bar Chart of Performance Comparison of Soft-margin PLA-SVM on AI4I2020 dataset 

Classifier 
Name 

Accuracy (%) Precision (%) F1 Score 
Area Under the 

ROC Curve 
 

Training 
Time 
(Sec) Valid- 

ation 
Test- 
ing 

Valid- 
ation 

Test- 
ing 

Valid- 
ation 

Test- 
ing 

Valid-
ation 

Testing 

Linear 
Discri-
minant 

80.7 80.9 82.98 82.29 0.8125 0.8131 0.8919 0.9006 3.47 

SMO-
based 
SVM 

96.0 96.0 94.60 95.06 0.9595 0.9595 0.9898 0.9912 22.71 

K nearest 
Neighbor 

94.1 94.4 91.32 91.47 0.9401 0.9429 0.9840 0.9869 5.89 

Decision 
tree 

92.9 93.7 93.25 94.40 0.9298 0.9377 0.9599 0.9637 3.25 

Soft-
margin  
PLA-
SVM 

96.6 97.0 96.03 96.65 0.9661 0.9698 0.9930 0.9943 2.68 

Naïve 
Bayes 

82.1 81.6 84.75 83.16 0.8268 0.8200 0.8874 0.8877 6.52 

XGBoost 96.5 96.6 94.35 94.44 0.9644 0.9655 0.9651 0.9662 7.35 
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The bar chart further details PLA-SVM's proficiency with an impressive F1 Score, 

symbolizing a robust balance between precision and recall, a critical aspect for predictive 

maintenance where accurate failure prediction is paramount. This graphical illustration aids 

in comparing PLA-SVM's performance metrics directly against competitors like SMO-based 

SVM, K nearest Neighbor, Decision Tree, and XGBoost, providing a clear visual testament 

to PLA-SVM's dominance not only in accuracy and precision but also in efficiency and 

overall performance. 

 

While acknowledging the commendable performances of other models, the bar chart 

analysis reinforces PLA-SVM's unparalleled efficiency and effectiveness, making it the 

model of choice for scenarios demanding high speed and accuracy. Its standout attributes, 

including high accuracy, precision, and recall, are graphically showcased, underscoring 

PLA-SVM's potential as the go-to approach for reliable and precise equipment failure 

prediction. This, in turn, suggests a move towards more dependable maintenance strategies, 

minimizing unplanned downtime and optimizing resource allocation.     

7.6 Conclusion 

In this Chapter, we explored the practical application of the Soft-margin Piecewise Linear 

Approximation Support Vector Machine (PLA-SVM) across various datasets, with a 

particular focus on its performance in terms of training speed, accuracy, precision, F1 score 

and area under ROC curve. Our comprehensive analysis across botanical, medical 

diagnostics, and industrial maintenance domains demonstrated that the Soft-margin PLA-

SVM model offers a significant improvement in training speed while preserving or 

enhancing accuracy, compared to other classifiers. In summary, the proposed Soft-margin 

PLA-SVM emerges as a robust model offering enhanced training speed without 

compromising on accuracy, making it a valuable tool in various practical applications. 
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CHAPTER  8 

 

Practical Implementation of PLA-SVM on 

Machine Learning Tool 

8.1 Introduction 

The field of machine learning presents a vast landscape of algorithms and tools that have 

transformed the way we approach complex classification tasks and data analysis. In this 

chapter, we explore the practical application of the proposed Soft-margin PLA-SVM 

classifier in the context of condition monitoring and fault detection. Our exploration unfolds 

within the domain of machine learning tools, where we assess the performance and 

capabilities of PLA-SVM through rigorous experimentation. 

In the present work, experimental implementation of the proposed Soft-margin PLA-SVM 

in a DC motor kit scenario has been carried out. The study begins with data collection from 

diverse operational conditions of the DC motor, including healthy and fault-ridden states. 

The performance comparison of PLA-SVM with other existing classifiers has been presented 

to determine its suitability for precise classification of DC motor operational conditions. The 

ultimate goal is to determine its potential applications in real-world scenarios, where fault 

detection and condition monitoring are crucial. 

8.2 The Machine Learning Tool [102] 

The DC Motor Control kit, also referred as Machine Learning (ML) tool, is an adaptable and 

affordable educational tool, ideal for illustrating the basic principles of motor control through 

diverse methods [102]. Its portability enhances its utility. Designed specifically for 

educational purposes, this tool brings the experience of a real-world system directly to the 

tool includes a DC motor with an encoder, embedded interface, 

and driver circuitry. The interactive front-end software provided allows users to implement 
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advanced control algorithms and generate data for classification and clustering. This can be 

done through programming in either LabVIEW or MATLAB/Simulink, offering flexibility 

in the choice of development environment. This Machine Learning (ML) tool shown in Fig. 

8.1 is equipped with three magnetic disks, enhancing its capabilities to perform various tasks. 

 

                           FIGURE 8.1:  Machine Learning Tool with three magnetic disks 

Highlighted by a range of remarkable features, this tool transforms any tabletop into a 

dynamic, real-world plant experience: 

Immersive Realism: The tool recreates a real-world plant experience right on your tabletop, 

providing a tangible and engaging platform for educational exploration. 

Intuitive Interaction: With its interactive front-end software modules, users can seamlessly 

interact with the tool, making complex concepts accessible and engaging. 

Plug-and-Play Convenience: Offering USB connectivity, this tool simplifies the setup 

process, allowing for quick and easy integration with your laptop or PC. 

Open Communication: The tool boasts an open communication command set, ensuring 

compatibility with various systems and enabling customization for specific learning needs. 

A key element that distinguishes this tool is its utilization of National Instruments (NI) 

LabVIEW software [103]. LabVIEW employs dataflow programming, where the flow of 

data through the nodes on the block diagram determines the execution order of the Virtual 

Instruments (VIs) and functions, offering a unique and intuitive approach to programming. 
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One standout VI (Virtual Instrument) within LabVIEW facilitates continuous reading of a 

user-selected reference voltage from the USB port. This data is then used to generate a Pulse 

Width Modulation (PWM) signal, which is sent through the output port of the USB interface, 

effectively controlling the motor's speed. 

From the user-friendly front panel of the VI shown in Figure 8.2, the user has the power to 

set the sampling rate of the reference signal and specify the desired PWM values. In practical 

experiments, the user can input preferred speed or position, enabling precise control over the 

DC motor speed. 

Figure 8.2 shows the open-loop control of a DC motor in action. The user needs to enter the 

desired PWM units, and observe the real-time response as the motor's speed adjusts 

accordingly.  

 

FIGURE 8.2: Interactive front-end software module of ML Tool 

PWM allows for precise regulation of a motor's speed by modifying the voltage supplied to 

the motor, and this voltage adjustment is achieved by manipulating the duty cycle of the 

PWM signal.  In this ML tool, the motor under consideration is a permanent magnet brushed 

DC motor (PMDC). In this setup, LabVIEW serves as the platform for designing, testing 

and executing control algorithms that work in tandem with the microcontroller and external 

driver to achieve precise and reliable DC motor speed control. 
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8.3 The Experimental Setup 

The experimental configuration involves meticulously situating the equipment on a solid and 

secure platform, ensuring a stable foundation for precise data collection. Subsequently, a 

secure and reliable connection is established by connecting the tool to the computer via a 

USB cable as shown in Fig. 8.3. 

. 

FIGURE 8.3:  ML Tool Experimental Setup  

FIGURE 8.4:  ML Tool with a) No load condition b) Load disk #1 

Verification of the connection's robustness and proper configuration is carried out by 

scrutinizing the COM port settings in the device manager, assuring that the interface is 

optimally set up. 

Once the Software connections are confirmed, the LabVIEW virtual instrument (VI) 

specially designed for this task is initiated. This VI is executed with administrator privileges 

(a) (b) 
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to ensure smooth and unrestricted functionality. The primary objective is to initiate the input 

of pulse-width modulation (PWM) signals and simultaneously capture and log the rotational 

speed of the DC motor, generating comprehensive data for analysis and subsequent 

experimentation. In this experimental setup, a magnetic disk, depicted in Figure 8.4 (b), is 

introduced as a controlled fault. This disk serves as a dynamically changing load, effectively 

simulating a specific type of fault within the system. This deliberate perturbation in the 

system induces noticeable fluctuations in the DC motor's speed, yielding essential insights 

and empirical data for further investigation and research purposes. 

 Data Collection  

After the successful setup of our experimental apparatus, we embarked on the crucial phase 

of real-time data collection. This stage is pivotal for capturing dynamic insights into the 

system's behavior. The data acquisition process is initiated by systematically applying a 

range of PWM (Pulse-Width Modulation) input signals, specifically varying between 60, 90, 

120, and 150, with an impressive granularity that allows us to observe the system's response 

across a spectrum of input values. The system's output, represented as speed in RPM, varies 

in response to the application of load disks 1, 2, and 3, as depicted in Fig. 8.1. 

 

         FIGURE 8.5: Data collection through Interactive front-end software module of ML Tool   
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To ensure precision and reliability, data is recorded at consistent intervals, with a sample 

time of 0.015 seconds as shown in Fig. 8.5. This meticulous sampling approach ensures that 

we capture data points at short, regular intervals, enabling us to discern fine-grained changes 

in the system's behavior as it reacts to different PWM inputs.  

The complexity and depth of our dataset are significantly enhanced by the inclusion of 

diverse load configurations. To use the ML Tool for a fault classification framework, we 

have implemented three unique load scenarios, each characterized by a distinct magnetic 

disk configuration. Disk 1 is equipped with four magnets, Disk 2 with six magnets, and Disk 

3 with eight magnets. These load disks function as simulated controller faults introduced 

into the system to assess its response. 

                                                           TABLE 8.1: Description of ML Tool dataset 

 

 

 

 

 

 

 

 

 

Table 8.1 presents the specifics of the gathered data. It considers the PWM (Pulse Width 

Modulation) input and the output speed as key features of the dataset. The classification or 

labeling is based on the use of various load disks. Each load disk placed on the motor is 

treated as a distinct fault type, attributed to that particular disk. The data is stored in a 

structured format within CSV (Comma-Separated Values) files. These CSV files offer a 

practical and widely accepted method for storing data, ensuring its accessibility and ease of 

use for subsequent analysis. 

Datasets Details 

Description Machine Learning Tool 

No of Features (02) 1. PWM           2. Speed 

Training set 
5461 Healthy Class 

15725 Faculty Class (All Faults) 

Testing set 
2339 Healthy Class 

6741 Faulty Class (All Faults) 

Fault mode 

F1 Healthy (Class 0) 
F2 Fault in Disk 1 (Class 1) 
F3 Fault in Disk 2 (Class 2) 
F4 Fault in Disk 3 (Class 3) 
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This dataset is a valuable resource that will serve as the foundation for our research and 

experimentation. The richness of the data, obtained through a precise and systematic 

methodology, will enable us to draw meaningful insights, identify patterns, and make 

informed conclusions regarding the behavior of the DC motor under varying fault conditions.  

8.4 Implementation of Sot-margin PLA-SVM on ML Tool Dataset  

In the section, we validate the proposed Soft-margin PLA-SVM algorithm introduced in 

Section 5.4. Once the data is collected from the ML tool, we compiled a multiclass dataset 

consisting of various operational conditions. Specifically, this dataset encompassed data for 

three distinct faults, each induced by a different type of disk, as well as one set of healthy 

data, corresponding to a condition with no applied load. To validate for a large dataset, we 

amassed an extensive dataset comprising 30,266 data points, which served as the foundation 

for our implementation of the Soft-margin PLA-SVM algorithm.  

 Data Pre-processing 

The dataset we collected, as illustrated in Fig. 8.6(a), displayed characteristics of non-

separability, underscoring the need for sophisticated analytical approaches. During the data 

pre-processing phase, we primarily focused on transforming the dataset from its original 

input space into a higher-dimensional feature space. This transformation was essential to 

address the inherent non-separability of the data for the implementation of the proposed Soft-

margin PLA-SVM. For this purpose, we specifically employed a explicit kernel 

transformation using degree-2 polynomial kernel. This choice was strategic, aimed at 

enhancing the linear separability of the data, thereby facilitating more effective analysis and 

classification 

Explicit Polynomial Kernel Transformation of ML Tool Dataset: 

Polynomial kernels are a fundamental tool in the realm of Support Vector Machines (SVMs), 

providing a means to address non-linearly separable data. These kernels work by mapping 

the original input data into a higher-dimensional feature space, where the relationships 

between different classes of data that are non-linear in the original space might become linear 

in the transformed space. 
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A polynomial kernel of degree d is defined as: 

K(xy) = (xy + c) d 

where x and y are the feature vectors in the input space, c is a constant term (usually set to 

1), and d is the degree of the polynomial. 

 

 

 

 

 

 

 

 

 

              

 FIGURE 8.6:  The scatter plot of ML Tool Dataset  

To apply a polynomial kernel of degree 2 to a dataset with two features, x1 and x2, the 

transformation would be as follows: (x1, x2 , x1, x2, x1
2, x1x2, x2

2). 

This transformation expands the original 2-dimensional feature space into a 6-dimensional 

space. The inclusion of original features, their squared terms, and the interaction term allows 

the SVM to construct a more complex decision boundary in the new feature space. 

By applying an explicit polynomial kernel transformation to the ML tool dataset, we 

expanded the feature space to six dimensions. The resulting feature set includes (1, SPEED, 

PWM, SPEED * PWM, SPEED2, PWM2). This enhanced, kernel-transformed dataset serves 

as the foundation for the development of various classifiers, including the Soft-margin PLA-
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SVM. The inclusion of these polynomially derived features is particularly crucial in 

capturing the intricate relationships within the data, enabling a more robust and nuanced 

classification performance 

 Results and Discussion 

In implementing our proposed PLA-SVM, we strategically partitioned the dataset into 

training and testing subsets, dedicating 70% of the data to training and the remaining 30% 

to testing. This division ensures a comprehensive learning process while retaining a 

substantial portion of the data for a rigorous evaluation of the model's performance. To 

bolster the robustness and reliability of our model, we adopted a 10-fold cross-validation 

technique, a method renowned for its effectiveness in assessing the generalizability of 

machine learning models. Additionally, for the design of all classifiers within this study, we 

utilized the One -vs -Rest strategy, a widely recognized approach in multiclass classification, 

known for its efficiency and precision in handling multiple class scenarios. Once these 

preparatory steps were completed and the dataset was suitably structured, we proceeded to 

apply our meticulously developed Soft-margin PLA-SVM algorithm. This application was 

a critical phase where the algorithm's effectiveness in handling and analyzing the data was 

put to the test, marking a significant step in our exploration of PLA-SVM capabilities.

 In our quest for precise classification, we employed a variety of classifiers on ML tool 

dataset, embracing both traditional methods and advanced techniques. This included 

conventional SMO-based Support Vector Machines (SVM), K-Nearest Neighbors (KNN), 

Ensemble Boosted Trees, and Decision Tree, all executed within MATLAB environment. 

Additionally, we utilized cutting-edge methods like XGBoost to tackle the complex nature 

of our data.  

A thorough comparative analysis was conducted in MATLAB to understand how these 

classifiers stack up against each other. This analysis was crucial for evaluating their 

individual strengths and limitations, aiding in selecting the most appropriate classifier for 

our specific needs and dataset. 

Moreover, to assess the efficacy of our proposed PLA-SVM classifier, we generated a 

confusion matrix and ROC (Receiver Operating Characteristic) curve, as illustrated in Figure 

8.7 (a) and (b) respectively. The confusion matrix provided valuable metrics such as 
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accuracy, precision, recall, and F1 score, offering a detailed view of the classifier's 

performance. 

In parallel, the ROC curve highlighted the balance between the true positive rate and false 

between different classes. The area under the ROC curve (AUC) was particularly 

instrumental as an indicator of our PLA-SVM model's overall classification effectiveness. 

This systematic  

 

             

FIGURE 8.7: (a) Confusing matrix and (b) ROC curve of soft-margin PLA-SVM on ML tool dataset 

approach demonstrates our implementation of the Soft-margin PLA-SVM algorithm on the 

ML tool dataset and its comparison with other classifiers.  

Table 8.2 and Fig. 8.8 provide a comprehensive performance comparison of the proposed 

Soft-margin PLA-SVM against other established classifiers, offering a visual and analytical 

perspective on its superiority 

The bar chart in Fig. 8.8, in particular, brings to life the stark contrast in performance 

metrics accuracy, precision, F1 score, ROC-AUC, and training time between PLA-SVM 

and its counterparts. Notably, PLA-SVM's exceptional test dataset accuracy of 99.8% and  

 
 
 

(a) (b) 
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                    TABLE 8.2: Performance Comparison of Soft-margin PLA-SVM on ML Tool Dataset 

 

 

 

 

 

 

 

 

                      

 

 

                      FIGURE 8.8: Bar chart of Performance Comparison of PLA-SVM on ML Tool dataset 

Model 

Accuracy Precision F1 score ROC-AUC Training 

Time 

(Sec) Train Test Train Test Train Test Train Test 

Decision 

Tree 
88.1 88.5 88.13 88.54 0.8813 0.8854 0.9973 0.9986 1.3397 

SMO-based 

SVM 
99.7 99.7 99.68 99.74 0.9968 0.9974 0.9990 0.9998 14.334 

 KNN 85.1 83.7 85.06 83.74 0.8506 0.8374 0.9863 0.9842 1.6667 

Ensemble 

Bagged Tree 
99.8 99.7 99.79 99.70 0.9979 0.9970 0.9995 0.9989 16.244 

Soft-margin 

PLA-SVM 
99.8 99.8 99.76 99.80 0.9976 0.9980 0.9995 0.9996 1.0416 

XGBoost 99.8 99.7 
99.8

6 

99.7

6 

0.998

5 
0.9974 

0.999

3 

0.999

7 
3.0493 
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precision rate of 99.80% are visually highlighted, underlining its unparalleled ability to make 

correct class predictions. This precision is crucial in fields like medical diagnosis or spam 

detection, where minimizing false positives is vital. The chart further illustrates PLA-SVM's 

dominance with the highest F1 score of 0.9980, showcasing its optimal balance of precision 

and recall, and an almost perfect AUC score, signifying its outstanding class differentiation 

capability. 

Moreover, PLA-SVM's computational efficiency is graphically depicted as significantly 

superior to other models like the Ensemble Bagged Tree and XGBoost, emphasizing its rapid 

performance delivery. This efficiency, paired with superior accuracy and reliability, visually 

and analytically establishes PLA-SVM as the premier choice for classification tasks 

demanding high precision, reliability, and speed. This detailed bar chart analysis 

complements the tabular data by providing a clearer understanding of PLA-SVM's leading 

edge in computational efficiency and model performance, underscoring its suitability for a 

broad spectrum of real-world applications. 

8.5 Conclusion 

In this experimental chapter, we successfully validate proposed Soft-margin PLA-SVM 

classifier using machine learning tool dataset in the fault classification scenario. Our 

investigation encompassed the collection of a complex dataset from a ML tool, which 

included diverse operational states. Throughout our rigorous experimentation, we compared 

PLA-SVM's performance with other renowned classifiers, demonstrating its consistent 

superiority. With near-perfect accuracy, precision, F1 score, and AUC, PLA-SVM proved 

to be the optimal choice for precisely classifying DC motor operational conditions. Notably, 

the PLA-SVM classifier's training time was a standout feature requiring only 1.04 seconds, 

it was significantly faster than its counterparts. As we conclude, the PLA-SVM's 

combination of high accuracy and swift training time highlights its robustness and 

practicality for real-world applications, especially in the domains of fault detection. 
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CHAPTER - 9 

Conclusions and Future Scope 

9.1 Conclusions 

Support Vector Machines (SVMs) stand as prominent tools in machine learning, especially 

for classification tasks. This research delved into the less-explored realm of SVMs the 

primal optimization problem aiming to simplify and optimize the process through 

Piecewise Linear Approximation (PLA) techniques. 

The introduction of PLA-SVM offers a fast and efficient alternative, directly addressing 

primal optimization and streamlining the entire process for a more computationally efficient 

solution. The PLA-SVM stands out for its consistent speed in training, essential for practical 

applications where quick data processing and prompt predictions are critical. 

Beyond speed, PLA-SVM's versatility and robustness shine. Designed independently of 

initial guess solutions and adaptable to require only an initial search domain, it proves 

applicable across diverse scenarios. Its reliability, ensuring feasibility and optimality, 

solidifies its position as a formidable SVM methodology. 

Thorough testing on datasets such as the Wisconsin Breast Cancer and laboratory gas 

turbines has shown solid proof of the PLA-SVM's usefulness and efficiency. Its ability to 

apply to new, unseen data, mainly due to its achievement of the best possible global solution, 

is notable and promising. PLA-SVM's successful application to large datasets, notably from 

the ML Tool, showcases its adeptness in handling challenges posed by high-dimensional and 

large-scale datasets crucial in today's data-rich environment.  

In the comparative analysis of various machine learning models such as Decision Tree, 

Naïve Bayes, SMO-based SVM, KNN, Ensemble Bagged Tree, Tri-Layered Neural 

Network, and XGBoost, PLA-SVM stands out for its expedited training speed and 

competitive, often superior, performance. This computational efficiency of PLA-SVM is a 
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result of its design and operational mechanics. The PLA-SVM's streamlined architecture, 

characterized by linear or piecewise linear models, contrasts with the more complex 

structures of models like Ensemble Bagged Trees and XGBoost. This architectural 

simplicity leads to lower computational demands during training and inference. 

Additionally, PLA-SVM's focus on linear functions facilitates quicker convergence during 

training compared to the iterative process in models like XGBoost, which builds and 

optimizes multiple decision trees. 

PLA-SVM's algorithmic efficiency is further highlighted in its direct approach to 

optimization, distinguishing it from the iterative processes of models like SMO-based SVMs 

or the tree-building mechanisms in Decision Trees and XGBoost. This approach not only 

accelerates convergence but also decreases the overall computational load. Moreover, PLA-

SVM's single-model framework reduces computational overhead, a contrast to the multiple 

learners managed in ensemble methods like Bagged Trees and XGBoost, which incur 

additional computational and memory usage. The potential for effective parallelization in 

PLA-SVM, utilizing multi-core processors or distributed computing, further enhances its 

training speed. Lastly, the linear nature of PLA-SVM allows it to efficiently handle high-

dimensional data in contrast to the challenges faced by methods like KNN and XGBoost in 

similar scenarios. 

Incorporating GUROBI into the design of Piecewise Linear Approximation SVM (PLA-

SVM) significantly enhanced its optimization capabilities, streamlining the process of 

solving the primal optimization problem in SVMs. By leveraging GUROBI's advanced 

linear programming functionalities, we achieved remarkable computational efficiency and 

robustness in PLA-SVM, allowing for rapid convergence to optimal solutions. This approach 

not only reduced computational time but also improved the scalability and performance of 

PLA-SVM across various datasets, demonstrating its potential as a powerful tool in machine 

learning for both academic research and practical applications. 

In conclusion, this study introduces a transformative approach to SVM optimization, 

emphasizing swift, innovative strategies by focusing on primal optimization and employing 

separable programming. The key highlights include PLA-SVM's fusion of classical SVM 

robustness with cutting-edge optimization techniques, showcasing a leap in computational 

efficiency and adaptability. This advancement not only underscores PLA-SVM's 
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effectiveness across diverse datasets but also sets a benchmark for future research, marking 

a significant stride towards sophisticated, efficient machine learning solutions. 

9.2 Future Scope of Work 

The promising results of this study pave the way for several future research directions, 

including: 

Extending PLA-SVM to Kernel-Based Methods: Leveraging the foundation laid by this 

research to explore kernel-based PLA-SVM, which could further enhance its applicability 

to non-linear problems. 

Developing Advanced Machine Learning Algorithms: There is potential for applying the 

principles of PLA-SVM to design sophisticated algorithms across various machine learning 

domains, including logistic regression with regularization, neural networks, ensemble 

methods, and more. 
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APPENDIX - A 

Additional Performance Metrics for PLA-SVM 

Evaluation 

This appendix provides additional insights into the performance of the Piecewise Linear 

Approximation Support Vector Machine (PLA-SVM) model, as suggested by the thesis 

examination feedback. Here, we detail the evaluation metrics not included in the main body 

of the thesis specifically, sensitivity, specificity, and Precision-Recall (PR) curves 

obtained using training/validation datasets to offer a comprehensive view of the model's 

performance across various datasets. 

Explanation of the New Matrices: 

Sensitivity (True Positive Rate): Measures the proportion of actual positives correctly 

identified by the model. 

Specificity (True Negative Rate): Indicates the proportion of actual negatives correctly 

identified. 

Precision-Recall (PR) Curves: Illustrate the trade-off between precision (the proportion of 

positive identifications that were actually correct) and recall (sensitivity) for different 

thresholds.  

A.1  Gas Turbine Engine Dataset 

Table A.1 presents the sensitivity and specificity of the PLA-SVM model evaluated using 

Gas Turbine dataset with columns detailing the sensitivity, specificity, and training time. 

Figures A.1 illustrate the Precision-Recall curves for the PLA-SVM model implementation 

on GTE dataset.  
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             TABLE A.1: Performance Comparison of various FSS fault classifier using additional matrices 

Model Sensitivity Specificity 
Training Time (In 

Sec) 

Decision Tree 0.99 0.99 1.947 

Naïve Bayes 0.82 0.99 13.602 

SMO-based SVM 1 1 21.059 

KNN 1 1 24.327 

Ensemble Bagged Tree 0.99 0.99 17.704 

Tri-Layered Neural Network 1 1 16.564 

XG Boost 1 1 1.624 

Hard-margin PLA-SVM 1 1 1.372 

 

FIGURE A.1:  Comparison of the Precision - Recall Curve of PLA-SVM with Existing Classifiers for GTE 

dataset 
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Analysis and Discussion: 

The proposed Hard-margin PLA-SVM model has demonstrated exceptional performance on 

the Gas Turbine Engine dataset. This model has achieved perfect sensitivity and specificity, 

as shown in the table, which indicates that it can flawlessly identify both the true positives 

and true negatives among the turbine states. This capability is crucial for predictive 

maintenance applications where the cost of false alarms and missed detections is high. 

The PR curve analysis aligns with the table's metrics, where the PLA-SVM model's curve is 

dominant, particularly in maintaining high precision even at the lower recall levels. This 

precision is critical in situations where false positives  such as incorrectly predicting a 

turbine fault  can lead to unnecessary inspections and downtime, which are costly for 

industrial operations. Furthermore, the model's training time is competitive at 1.372 seconds, 

surpassing other models such as the Ensemble Bagged Tree and SMO-based SVM, which 

have higher training times. This efficiency is beneficial in operational environments where 

models need to be retrained frequently as new data becomes available. 

A.2 Iris Flower Dataset 

TABLE A.2: Performance Comparison of various classifier using additional matrices for IRIS dataset 
 

 
 
 
 
  

 

 

 

 

Table A.2 presents the sensitivity and specificity of the PLA-SVM model evaluated using 

IRIS flower dataset with columns detailing the sensitivity, specificity, and training time. 

 

Classifier Name Sensitivity Specificity 
Training Time 

(Sec) 

SMO-Based SVM 0.94 0.94 3.8085 

Linear Discriminant 0.94 0.94 1.7875 

Ensemble Bagged Trees 0.94 0.88 12.463 

Soft-Margin PLA-SVM 0.94 0.94 1.138 

K Nearest Neighbor 0.97 0.88 2.8939 

XGBoost 0.91 0.94 2.2256 

Logistic Regression (Kernel) 0.91 0.94 11.102 
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FIGURE A.2:  Comparison of the Precision - Recall Curve of PLA-SVM with Existing Classifiers for IRIS 

Flower dataset 

Figure A.2 illustrate the Precision-Recall curves for the PLA-SVM model implementation 

on IRIS Flower dataset. 

Analysis and Discussion: 

The Soft-margin PLA-SVM model demonstrates a robust classification performance on the 

Iris Flower dataset. With a sensitivity score of 0.94, it identifies major instances of the 

positive class. Its specificity of 0.94 is comparable to other classifiers, underscoring its 

ability to accurately identify the negative class and minimize false positives, which is 

essential for reliable species classification. 

The PR curve, which plots precision against recall, shows the PLA-SVM model's superior 

balance compared to other classifiers. The model maintains high precision even as recall 

increases, indicating that it does not sacrifice the accuracy of the positive predictions as it 

captures more of the positive class. This is particularly important in botanical classification, 

where the cost of misclassification can be high, whether it's for conservation efforts or 

horticultural trade. 

Additionally, the model achieves this high level of precision and recall with a training time 

of only 1.138 seconds, making it not only accurate but also efficient. 
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A.3  PIMA Indian Diabetes Dataset 

Table A.3 presents the sensitivity and specificity of the PLA-SVM model evaluated using 

PIMA Indian diabetes dataset with columns detailing the sensitivity, specificity, and training 

time. Figures A.3 illustrate the Precision-Recall curves for the PLA-SVM model 

implementation on PIMA Indian diabetes dataset.  

       TABLE A.3: Performance Comparison of various classifier using additional matrices for PIMA dataset 

 

 

 

 

 

 

 

FIGURE A.3:  Comparison of the Precision - Recall Curve of PLA-SVM with Existing Classifiers for PIMA 

Indian diabetes dataset 

Classifier Name Sensitivity Specificity 
Training Time 

(Sec) 
Naïve Bayes 0.62 0.78 2.83 

SMO-based SVM 0.74 0.78 2.19 

Decision Tree 0.76 0.76 12.56 

Tri layered NN Decision 0.77 0.76 33.68 

Soft-Margin PLA-SVM 0.78 0.74 1.37 

Linear Discriminant 0.70 0.79 2.30 

XGBoost 0.76 0.76 3.69 
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Analysis and Discussion: 

The performance analysis of the Soft-margin PLA-SVM on the PIMA Indian Diabetes 

dataset highlights its effectiveness in identifying diabetic instances with a sensitivity rate of 

0.78, matching the best-performing models in this metric. It also demonstrates a fair 

specificity of 0.74, illustrating its capacity to recognize non-diabetic instances correctly. 

These metrics are critical for medical diagnostic tools where the balance between correctly 

identifying conditions and avoiding false alarms is paramount. 

The PR curve comparison shows the PLA-SVM model with a notable precision, indicating 

its reliability in predicting diabetes among the patient population. The model's precision is 

consistent across different recall levels, showcasing its capability to maintain a high true 

positive rate while minimizing the false positives, which is essential for medical screening 

tests. 

Furthermore, the training efficiency of the Soft-margin PLA-SVM, with the lowest training 

time of 1.37 seconds among the high-performing classifiers, positions it as a pragmatic 

choice in clinical settings where quick model retraining is necessary to adapt to new data. Its 

speed does not compromise the model's diagnostic accuracy, making it a suitable candidate 

for deployment in healthcare applications where time and accuracy are of the essence. 

A.4 Wisconsin Breast Cancer (WBC) Dataset  

Table A.4 presents the sensitivity and specificity of the PLA-SVM model evaluated using 

WBC dataset with columns detailing the sensitivity, specificity, and training time. Figures 

A.4 illustrate the Precision-Recall curves for the PLA-SVM model implementation on WBC 

dataset.  
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TABLE A.4: Performance Comparison of various classifier using additional matrices for WBC dataset 

 

 

 

 

    FIGURE A.4:  Comparison of the PR Curve of PLA-SVM with Existing Classifiers for WBC dataset 

Analysis and Discussion: 

The Soft-margin PLA-SVM model stands out in the analysis of the Wisconsin Breast Cancer 

dataset, achieving near perfect sensitivity (0.98), which signifies its exceptional ability to 

identify all cases of breast cancer correctly. This is crucial in medical diagnostics, where 

Classifier Name Sensitivity Specificity Training Time (Sec) 

Tri layered NN Decision 0.91 0.95 5.76 

SMO-based SVM 0.95 0.96 2.37 

K Nearest Neighbor 0.91 0.97 1.56 

Soft-Margin PLA-SVM 0.98 0.95 0.74 

Ensemble Boosted Trees 0.91 0.94 8.07 

Linear Discriminant 0.91 0.97 1.19 

XGBoost 0.95 0.97 0.83 
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missing a positive case can have dire consequences. The specificity of 0.95 demonstrates the 

model's accuracy in correctly identifying non-cancerous instances, minimizing the risk of 

false positives that could lead to unnecessary anxiety or treatments. 

The PR curve provides further evidence of the PLA-SVM's superior performance. It 

indicates the model's high precision across the entire range of recall levels, essential in the 

medical field where the precision of diagnosis is as important as its sensitivity. Such 

performance makes the PLA-SVM model a trustworthy tool in breast cancer screening 

programs. 

Additionally, the model's training time of only 0.74 seconds highlights its efficiency, 

enabling quick retraining with new data or in different clinical settings. This efficiency, 

combined with high sensitivity and specificity, positions the PLA-SVM as an excellent 

choice for use in clinical decision support systems, where timely and accurate diagnosis is 

paramount. 

A.5 AI4I 2020 Predictive Maintenance (PdM) Dataset  

Table A.5 presents the sensitivity and specificity of the PLA-SVM model evaluated using 

PdM dataset with columns detailing the sensitivity, specificity, and training time. Figures 

A.5 illustrate the Precision-Recall curves for the PLA-SVM model implementation on PdM 

dataset.  

    TABLE A.5: Performance Comparison of various classifier using additional matrices for PdM dataset 

 

 

 

 

 

 

 

Classifier Name Sensitivity Specificity Training Time (Sec) 

Linear Discriminant 0.78 0.82 3.47 

SMO-based SVM 0.97 0.94 22.71 

K nearest Neighbor 0.96 0.91 5.89 

Decision tree 0.92 0.93 3.25 

Soft-Margin PLA-
SVM 

0.97 0.96 2.68 

Naïve Bayes 0.79 0.84 6.52 

XGBoost 0.98 0.94 7.35 
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FIGURE A.5:  Comparison of the Precision - Recall Curve of PLA-SVM with Existing Classifiers for PdM 

dataset 

Analysis and Discussion: 

The Soft-margin PLA-SVM model's performance on the AI4I 2020 Predictive Maintenance 

dataset is outstanding, as reflected by its high sensitivity and specificity scores, 0.97 and 

0.96 respectively. This indicates an exceptional ability of the model to correctly identify 

instances requiring maintenance, which is critical in preventing machine downtime and 

optimizing production efficiency. 

The PR curve analysis reveals that the PLA-SVM maintains a high precision across all levels 

of recall. Such a characteristic is vital in maintenance scenarios, where the precision of 

predictive maintenance alerts is just as important as their recall. It ensures that maintenance 

resources are allocated efficiently and that alerts are reliable and actionable. 

Moreover, the model achieves this high level of performance with a training time of only 

2.68 seconds, which is significantly less than other models with comparable sensitivity and 

specificity. This rapid training capability facilitates the implementation of the model in real-

time systems, where it can quickly adapt to new data and changing conditions. 
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A.6 Machine Learning (ML) Tool Dataset 

Table A.6 presents the sensitivity and specificity of the PLA-SVM model evaluated using 

ML Tool dataset with columns detailing the sensitivity, specificity, and training time. 

Figures A.6 illustrate the Precision-Recall curves for the PLA-SVM model implementation 

on ML Tool dataset.  

   TABLE A.6: Performance Comparison of various classifier using additional matrices for ML tool dataset 

 

 

FIGURE A.6:  Comparison of the Precision - Recall Curve of PLA-SVM with Existing Classifiers for ML 

Tool dataset 

 

Model Sensitivity Specificity 
Training Time (In 

Sec) 

Decision Tree 1 0.99 1.3397 

SMO-based SVM 1 1 14.334 

KNN 0.93 1 1.6667 

Ensemble Bagged Tree 1 1 16.244 

Soft-margin PLA-

SVM 
1 1 1.0416 

XG Boost 1 1 3.0493 
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Analysis and Discussion: 

The Soft-margin PLA-SVM model exhibits flawless performance metrics on the Machine 

Learning Tool dataset, achieving perfect sensitivity and specificity scores. This highlights 

the model's ability to detect all instances of faults in the DC motor control kit without 

misclassification. Such high accuracy is crucial for maintaining the integrity of automated 

control systems and preventing potential operational failures. 

The PR curve confirms the model's excellent precision across various thresholds, which is 

particularly important for fault classification in machine learning tools. The precision with 

which the PLA-SVM distinguishes between different types of faults ensures that the 

maintenance actions can be accurately targeted, which enhances the reliability of the control 

kit. 

Furthermore, the Soft-margin PLA-SVM's training efficiency is evident with the shortest 

training time of 1.0416 seconds compared to other high-performing models. This rapid 

training capability is advantageous for real-time systems where frequent recalibration with 

new data is required. 

A.8 Conclusion 

The comprehensive analysis across six diverse datasets has significantly enhanced the depth 

of evaluation for the proposed PLA-SVM model. By incorporating additional metrics such 

as sensitivity, specificity, and precision-recall curves, we have provided a more complete 

picture of the model's performance. The PLA-SVM consistently demonstrated high 

sensitivity and specificity, indicating its robustness in accurately identifying positive and 

negative cases. The precision-recall analysis further established its capability to maintain 

precision across varying levels of recall, crucial for practical applications. 

The findings affirm that the PLA-SVM model not only meets the standard performance 

benchmarks but also excels when evaluated against these additional performance metrics. 

 


